

DC Circuits

- · Ohm's Law
 - V = IR
- Resistors in parallel:

$$\bullet \quad \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

- Resistors in series:
 - $R_{eq} = R_1 + R_2 + R_3$
- Equivalent conductance:
 - $G = \frac{I}{V}$
- · Individual conductance:
 - $G_i = \frac{1}{R_i}$

Equipment

- Power supply
- Digital multi-meter
- Ammeter
- Resistance board
- Resistors

Procedure

- Ohm's Law
 - Measure resistance with multimeter set to ohms
 - Connect power supply, multimeter, and ammeter to each resistor as shown in Fig 1
 - Measure the current through each resistor at 5 different voltages
- Voltage Law
 - Set up as shown in Fig. 2
 - Measure voltage across source
 - Measure voltage across each of the 3 resistors and compare with voltage across source
- Current Law
 - Set up as shown in Fig. 3
 - Measure voltage across R1, R2, and R3 and calculate their respective currents
 - Verify that $I_1 = I_2 + I_3$

Procedure

Resistors in Series

- Set up as shown in Fig. 2
- Measure the current and determine the equivalent resistance
- Verify that $R_{eq} = R_1 + R_2 + R_3$
- Repeat for all three combinations of 2 resistors

Resistors in Parallel

- Set up as shown in Fig. 4
- Measure current and determine equivalent conductance
- Verify that $G_{eq} = G_1 + G_2 + G_3$
- Repeat for all three combinations of 2 resistors

Procedure

- Resistors in Series-Parallel
 - Set up as shown in Fig. 3
 - Measure current when a known voltage is applied and determine equivalent resistance
 - Compare with the theoretical value calculated from the know values of the three resistors
- Resistors in Parallel-Series
 - Set up as shown in Fig. 5
 - Measure current when a known voltage is applied and determine equivalent resistance
 - Compare with the theoretical value calculated from the know values of the three resistors

