

Electric Fields

Two charged bodies exert a force on each other:

$$\bullet \quad F = \frac{kQ_1Q_2}{r^2}$$

 This can be described as an electric field from one particle acting on the charge of the other particle:

•
$$F_2 = Q_2 E_1 \rightarrow E = \frac{Limit}{Q \rightarrow 0} \frac{F}{Q}$$

 Work is force times displacement, so the work done by an electric field on a charge is:

•
$$W = QE \cdot s$$

 Work is the change in potential energy; Electric potential is potential energy per unit charge:

•
$$V \equiv \frac{W}{Q}$$

Electric Fields

- An electric field does no work to a charge moving perpendicular to the field direction
- Equipotentials are lines (or curves) that have the same potential
- When a charge moves along an equipotential, no work is done
- This means that the electric field intersects the equipotential perpendicularly
- Electric field curves should be marked with arrows pointing from high to low potential
- We will measure the electric potential (V) and map out equipotential curves
- We will then map the electric field by drawing smooth curves that intersect the equipotentials perpendicularly

Electric Fields

The average magnitude of the electric field between potentials is:

$$\bullet \quad E = -\frac{(V_f - V_i)}{d}$$

 As the field fans out from a point charge, the magnitude of the electric field decreases. We will verify this

Equipment

- Power supply
- Multi-meter
- Voltage probe
- Conducting sheets with electrode patterns (5 in total)
- · Plain white paper with pen for marking equipotentials

Procedure

- Tack a plain piece of paper onto the pen side
- Tack the electrodes with metallic push-pins
- Connect the push-pins to the power supply with alligator clips
- Set the multimeter to DC 20 volts
- Connect the ground terminal of the supply to the low input of the multimeter
- Connect the probe to the high (+) input of the multi-meter
- Touch the probe to the push-pin connected to the high (+) output of the power supply and adjust until the meter reads 10.00 V
- Touch the probe to different points on the conducting sheet and note the variation in potential

Procedure

- Check that the electrodes are themselves equipotentials
- Mark the extreme points on the electrodes on the plain paper and sketch the electrode
- Map out several equipotentials and record the potential for each one
- Draw in the field lines including arrows pointing from high->low potential

