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ABSTRACT

 

The Advanced LIGO (aLIGO) detectors use 1064 nm lasers to measure the tiny fluctua- 

tions in spacetime that occur when gravitational waves pass through the earth. LIGO makes 

use of advanced coating methods and materials to limit the amount of light that scatters 

from the main beam, but some amount of light does scatter. This stray light can interact 

with surfaces inside the interferometer that are not seismically isolated and then recombine 

with the main beam, introducing excess noise into the gravitational wave channel. This the- 

sis reviews the methods for modeling scattered light with ray tracing software and analytical 

models, for measuring scattered light with driven measurements of the vacuum enclosure, 

and for mitigating scattered light with baffles and changes to interferometer controls. It 

also details the process for finding correlations with auxiliary sensors in order to locate the 

sources of scattered light noise. The results of this work are improved sensitivity of the LIGO 

detectors in the frequency band from 20 Hz up to 200 Hz.
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CHAPTER 1. INTRODUCTION

 

On September 14, 2015, the LIGO detectors in Livingston, LA and Hanford, WA made 

their first observation of gravitational waves from colliding black holes and ushered in the 

era of gravitational wave astronomy. The detectors looked for gravitational waves from 

September 2015 through January 2016 in what was the first observation run (O1) for LIGO. 

During O1, the detectors observed two more black hole-black hole mergers for a total of 

three events. For most of the rest of 2016, the detectors were down so that improvements 

to sensitivity could be made. From November 2016 through August of 2017, the detectors 

completed the second observing run (O2) during which seven more black hole mergers and one 

neutron star merger were observed. The detectors again underwent a series of improvements 

over the next 19 months before beginning the third observing run which was split into two 

parts (O3a and O3b) by a one month break for improvements. O3a ran from April 2019 until 

September 2019 and O3b ran from November 2019 until March 27, 2020 when operations were 

suspended due to Covid-19. Results from the third observing run are still being analyzed, 

but based on public alerts issued during the run, somewhere around 56 events were observed 

[1].

 

The LIGO detectors can sense changes in differential arm length on the order of 2 × 

10− 20m /
√

 

Hz at around 200 Hz. This sensitivity corresponds to an estimated binary neutron 

star inspiral range, or range, of 134 Mpc for the Livingston Observatory and 111 Mpc for 

the Hanford observatory during O3 [2]. This range, sometimes called sensemon range, is one 

of several range definitions that are used in the field. It is averaged over source polarization, 

orientation, and sky position [3]. When the first dection was made in 2015, the range of the 

observatories was between 70-80 Mpc [4]. This range can be thought of as the radius of the 

observable volume, so improvements to the range are cubed when considering improvements 

to the observable volume. As the sensitivity, and thus range, improved, so too did the rate 

of detections as shown in Figure 1.1.

 

The sensitivity of a given instrument is limited by a combination of noise sources. Much 
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Figure 1.1. Cumulative number of detections and public alerts for the LIGO-Virgo network. 

The increase in the rate of detections over time corresponds with improvements to instrument 

sensitivity. The uptick at the end of O2 was not due to instrumental changes, but the 

stochastic nature of detections [1].

 

of the time between observing runs is spent installing new hardware and making adjustments 

to the interferometer to reduce the noise in the detector and to improve sensitivity. During 

the observing runs, scientists and engineers monitor data to identify new sources of noise 

and also design new hardware to be installed in the instrument when the observing run ends.

 

This dissertation focuses on the noise that arises from scattered light in the interferometer. 

All throughout the interferometer, at every location along the path of the main laser where 

the beam is reflected, a small amount of light scatters out of the main beam. This scattered 

light can then reflect from surfaces like the vacuum chamber walls that are not seismically 

isolated and then recombine with the main beam. When scattered light recombines with the 

main beam, it introduces noise into the gravitational wave channel.

 

In Chapter 2, we begin by reviewing gravitational waves in general relativity and discuss 

the types of events that can generate gravitational waves. We then discuss detecting gravi- 

tational waves with LIGO and the various noise sources that limit the sensitivity of LIGO. 
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In Chapter 3, we continue the discussion of detector noise by taking a closer look at noise 

from scattered light.

 

The next few chapters cover three different scattered light investigations. In Chapter 4 

we review the design, installation, and performance of stray light baffles that were installed 

after the completion of the second observing run. While getting the detector ready for the 

third observing run, we began to notice scattered light noise that was correlated with the 

increase in ground motion due to daily human activity and the increase in ground motion 

from ocean waves. Chapter 5 reviews these investigations and the methods used to mitigate 

the noise.

 

The LIGO beamtubes are the 1.2 m diameter by 4 km long steel vacuum tubes through 

which the laser travels. When the beamtube was constructed, a series of baffles were placed 

inside the tube to prevent light from forward scattering along the tube to the test mass at 

the other end of the arm. Though the baffles fixed the problem of forward scattered light, 

they introduced the possibility of noise from light that back-scatters from the baffles and 

recombines with the main beam at the same test mass from which it originally scattered. 

In Chapter 6 we examine the problem in detail and present a set of measurements made to 

measure the noise. Chapter 7 provides a summary of this dissertation.
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CHAPTER 2. GRAVITATIONAL WAVES

 

In November 1915, Albert Einstein published his general theory of relativity, which pre- 

dicted gravitational waves. Prior to Einstein’s theory, people like Henri Poincaré had theo- 

rized about the existence of gravitational waves. Einstein himself was not initially convinced 

that gravitational waves represented a physical phenomenon. He had determined that an 

exact analog to electrical waves, as proposed by Poincaré, was not possible due to the lack 

of a gravitational dipole moment [5]. At one point he became convinced that gravitational 

waves did not exist. He prepared a paper with the results stating this, but one of the re- 

viewers found an error that made the conclusion invalid. Eventually, Einstein published an 

updated version of the paper that included a cylindrical gravitational wave solution to the 

equations of general relativity [6].

 

The first attempts at detecting gravitational waves were made by Joseph Weber in the 

1960s. Weber used aluminum cylinders that were 66 cm diameter by 153 cm long to look for 

gravitational waves. A few groups around the world, including a group at LSU, developed 

their own Weber bars. Ultimately, the Weber bars were too insensitive to detect gravitational 

waves, but their development spurred further interest in the field. In 1979, Hulse and Taylor 

announced that they had found evidence for the emission of gravitational radiation from a 

binary pair of neutron stars. They observed a binary system containing a pulsar and found 

that the orbit of the system was contracting over time, consistent with the system losing 

energy to gravitational waves over time [7].

 

The idea to use laser interferometers for detecting gravitational waves was conceived 

independently by a few people in the 1960s. By the 1970s, people had begun building labo- 

ratory interferometers. In 1978, Robert Forward published a paper describing an experiment 

using an instrument with an effective arm length of 4.25 m. Forward operated his detector 

for 150 hours and found no events that were coincident with a number of Weber bars that 

were operating at the time [8]. During the 1970s and early 1980s, Rainer Weiss built a 1.5 

m prototype at MIT, a group in Germany built first a 3 m then a 30 m instrument, and a 
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group in Glasgow led by Ron Drever built a 10 m interferometer. In 1983, a 40 m instru- 

ment was completed by Drever and others at Caltech. In the 1980s, groups began making 

plans for and seeking funding to build kilometer-scale interferometers. In 1983, a team from 

MIT with contributions from Caltech and work by Arthur D. Little and Stone and Webster 

Consultants completed the "Blue Book" survey on the feasibility of building a large scale 

interferometer [9].

 

In the 1990s, several large scale projects were approved and constructed. In Germany, 

construction on the GEO 600 detector (with 600 m long arms) was started in 1995. Con- 

struction on the 3-km VIRGO detector in Italy began in 1996. The 4-km LIGO detectors 

were started in 1994 at the Hanford, WA site and in 1995 at the Livingston, LA site. In 

2012, work began on the underground, 3-km KAGRA detector in Japan.

 

In this chapter, we begin with a brief overview of gravitational waves in general relativity. 

We then examine how gravitational waves are generated in the universe before moving on 

to interferometric detection of gravitational waves. We look at the operating principles of 

LIGO and some of the noise sources that limit the sensitivity of LIGO. We end the chapter 

with a review of the discoveries made to date by LIGO and VIRGO.

 

2.1 General Relativity

 

General relativity describes how mass causes spacetime to curve and how gravity is a 

result of this curvature. The Einstein field equations we get from general relativity describe 

the relationship between matter and spacetime. These equations can only be solved exactly 

when simplified by symmetry. Fortunately for studying gravitational waves, we can further 

simplify things to linearized gravity which treats gravitational waves as small perturbations 

in flat spacetime.

 

We begin by considering the spatial distance, dl , between two points in flat, 3-dimensional 
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space. Using Euclidean geometry, we know that this distance can be written as:

  \label {eq:euclid} dl^2=dx^2 + dy^2 + dz^2 

     

 

(2.1)

 

In the early 20th century, Einstein published his special theory of relativity which showed 

that space and time are inseparable. Prior to Einstein, the distance and time between two 

events were thought to be independent and invariant. Special relativity said that the two 

were not independent, and that a new interval, spacetime , was the invariant. Minkowski 

introduced the following metric to describe the spacetime interval, ds , between two events:

  \label {eq:minkowski} ds^2=-c^2dt^2+dx^2 + dy^2 + dz^2 

       

 

(2.2)

 

We can also write Equation 2.2 using Einstein notation:

  \label {eq:einstein_notation} ds^2=g_{\mu \nu }dx^{\mu }dx^{\nu } 

 



 

(2.3)

 

where gµν 

is the metric tensor, and in the flat (Minkowski) spacetime case where there is no 

gravitational field, gµν 

= ηµν , where ηµν 

is defined as:

  \label {eq:mink_metric} \eta _{\mu \nu } = \begin {pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end {pmatrix} 







  

  

  

  



 

(2.4)

 

When we include the effects of a gravitational field, spacetime is curved, gµν 

̸ = ηµν , and 

gµν 

can no longer be made diagonal. We can, however, consider the effects of a gravitational 
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wave traveling in the + z direction by introducing a small perturbation, hµν :

  \label {eq:h_mu_nu} h_{\mu \nu } = \begin {pmatrix} 0 & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & b & -a & 0 \\ 0 & 0 & 0 & 0 \end {pmatrix} 







  

  

  

  



 

(2.5)

 

such that gµν 

= 

(
ηµν 

+ hµν 

+ O [ hµν ]
2 

) 

where we neglect the higher order terms. We can 

rewrite hµν 

as the sum of two components, hµν 

= ah+ 

+ bh× 

where:

  \label {eq:h_plus} h_+ = \begin {pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end {pmatrix} 







  

  

  

  



 

(2.6)

  \label {eq:h_cross} h_{\times } = \begin {pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end {pmatrix} 







  

  

  

  



 

(2.7)

 

h+ 

and h− 

form an orthogonal basis with which we can describe the polarization of a grav- 

itational wave traveling in the + z direction. h+ 

describes the oscillation (shrinking and 

stretching of spacetime) that occurs along the x- and y-axes whereas h× 

describes a shrink- 

ing and stretching that occurs along axes that are rotated 45◦ from those of h+.

 

Using the metric, gµν , from above, we can now examine the Einstein field equations:

  R_{\mu \nu }-\frac {1}{2}Rg_{\mu \nu }+\Lambda g_{\mu \nu }=\frac {8\pi G}{c^4}T_{\mu \nu } 

























 

(2.8)

 

The Ricci tensor, Rµν , is a second order tensor providing information about spacetime cur- 
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vature and the stress-energy tensor, Tµν , provides information about the source of the curva- 

ture. The Ricci scalar, R is the trace of the Ricci tensor and Λ is the cosmological constant. 

Finally, G is the Newtonian gravitational constant and c is the speed of light.

 

In the weak field approximation far from the source, and using the transverse-traceless 

gauge, we can write the field equations in vacuum as:

  \label {eq:wave} \left ( \nabla ^2 - \frac {1}{c^2}\frac {\partial ^2}{\partial t^2}\right )h_{\mu \nu }=0 























 

(2.9)

 

This is a wave equation where hµν 

represents a gravitational wave propagating at the speed 

of light [10].

 

2.2 Sources of Gravitational Waves

 

As is the case with electromagnetic waves, we can study the generation of gravitational 

waves using the multipole expansion. For electromagnetic waves, monopole radiation is not 

possible due to conservation of electric charge. Gravitational monopole radiation would 

require a time varying change in the monopole moment, or a change in the total mass of 

the system. But conservation of energy tells us that this type of change is forbidden in an 

isolated system.

 

We next consider the gravitational dipole moments. We can construct a mass dipole 

moment in the following way [11]:

  \boldsymbol {d} = \sum \limits _{particles\, A} m_A \boldsymbol {x_A} 











 

(2.10)

 

The first time derivative of this dipole moment gives the linear momentum of the system:

  \boldsymbol {\dot {d}}=\sum \limits _{particles\, A} m_A \boldsymbol {\dot {x}_A}=\boldsymbol {p} 











 

(2.11)

 

The law of conservation of momentum tells us that ˙ p = 0 , so there can be no mass dipole 
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radiation.

 

We can also create an analog to the magnetic dipole moment:

  \boldsymbol {J}=\sum \limits _{particles\, A}r_A \times (mv_A) 











 

(2.12) 

but this is the angular momentum of the system, and it must also be conserved, so there 

can be no gravitational dipole radiation.

 

The next moment to consider is the quadrupole moment:

  I_{\mu \nu }\equiv \int dV(x_\mu x_\nu - \frac {1}{3}\delta _{\mu \nu }r^2)\rho (\boldsymbol {r}), 























 

(2.13)

 

where ρ ( r is the mass density. In the case where spherical or cylindrical symmetry is broken, 

the second derivative of the quadrupole moment is non-zero, and gravitational radiation is 

emitted [10]:

  \label {eq:gr_strain} h_{\mu \nu }=\frac {2G}{Rc^4}\ddot {I}_{\mu \nu }, 















 

(2.14)

 

where G is the gravitational constant, R is the distance from the source to the detector, 

and c is the speed of light. Any asymmetric acceleration of the mass in a system will create 

gravitational waves, but the coefficient on the right hand side of Equation 2.14 is very small, 

so only very massive systems can create waves capable of being detected.

 

An estimate for the amplitude of the gravitational wave produced by a binary neutron star 

system located in the Virgo cluster (a distance of R ≈ 15Mpc ) is given in [10]. This estimate 

is proportional to the product of the Schwarzschild radii ( rs) and inversely proportional to 

the separation distance ( r0) and the distance to the observer ( R ):

  h\approx \frac {r_{s,1} r_{s,2}}{r_0 R} 













 

(2.15)

 

Assuming a mass of 1 . 4 M⊙ 

for each of the neutron stars, the Schwarzschild radii ( rs 

= 

10



 

2 GM /c2) would be rs 

≈ 5km . When r0 

= 20 km ,

  \label {eq:tiny} h\approx 1\times 10^{-21} 

   

 

(2.16)

 

2.2.1 Compact binary coalescence

 

Two compact, massive objects (like black holes or neutron stars) in a binary system 

will radiate gravitational waves. As the objects orbit, energy leaves the system in the 

form of gravitational waves and the two objects move closer together with increasing or- 

bital frequency until they merge. Radio astronomy observation of the first binary pulsar, 

PSR 1913+16 , showed that the orbital period was decreasing at the rate predicted by gen- 

eral relativity [7]. In 2015, LIGO made the first direct observation of gravitational waves 

from a binary coalescence with GW150914 . The binary system was comprised of two black 

holes with masses of 85+21 

− 14 

M⊙ 

and 66+17 

− 18 

M⊙ 

and it was located at a luminosity distance of 

5 . 3+2 . 4 

− 2 . 6Gpc . The peak gravitational wave strain for this event was h = 1 × 10− 21 [12].

 

2.2.2 Supernovae

 

Core collapse supernovae are another potential source for generating gravitational waves. 

There are a number of scenarios that lead to core collapse supernovae [13], but the general 

idea is that any asymmetries in the mass distribution that arise during the collapse and 

bounce phases will give a time varying quadrupole moment and generate gravitational waves. 

The estimated gravitational wave energy emitted by core collapse supernovae ranges from 

10− 12 to 10− 8 M· 

c2. The distance at which detectors like Advanced LIGO can expect to see 

signals from core collapse supernovae is less than 100 kpc. This distance means that signals 

from the Milky Way galaxy and Magellanic clouds could be detected [14].
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2.2.3 Pulsars

 

Pulsars, and other rapidly rotating neutron stars, which have an asymmetric mass dis- 

tribution will generate gravitational waves. The asymmetry comes from "mountains" on 

the surface of the neutron star. The search for pulsars in LIGO data look for pulsars that 

have been identified by radio and gamma ray observations which provide precise information 

about the position, rotational frequencies, and change in frequency over time. The LIGO 

searches have yet to yield a discovery, but they have helped to place upper limits on the size 

of the mountains, or the ellipticity, of the pulsars that have been targeted. Upper limits on 

the size of the mountains range from 50 cm to less than 0.1 mm [15].

 

2.2.4 Gravitational Wave Background

 

The cosmic gravitational wave background will have nearly constant amplitude and a 

broad continuous spectrum. All of the previously mentioned sources of gravitational waves 

are expected to contribute to the stochastic background. An additional source for the back- 

ground are the quantum gravitational fluctuations that occurred just after the Big Bang. 

The search for the stochastic background involves cross-correlating the data taken from two 

detectors. The data from aLIGO’s first observing run did not yield any evidence for the 

background but did set upper limits on the expected energy density of the background. For 

the frequency-independent (flat) background, the upper limit is Ωg w 

< 6 . 0 × 10− 8 and for a 

background of compact binary coalescences, the upper limit is Ωg w 

< 4 . 8 × 10− 8 [16].

 

2.3 Interferometric Gravitational Wave Detection

 

In a simple Michelson interferometer, such as the schematic representation in Figure 2.1, 

light passes through a beamsplitter and then travels down two perpendicular arms until it 

reaches the end mirrors. After reflecting from the end mirrors, the light travels back along 

the arms and recombines at the beamsplitter. Half of the light goes back towards the light 

source and the other half goes to the detection port. Depending on the travel time of the light 
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Figure 2.1. Schematic layout of a simple Michelson interferometer [17].

 

in the two arms, the light at the detection port can interfere constructively, destructively, or 

somewhere in between.

 

For light, the total spacetime interval, ds2 is always zero. If we orient the arms of an 

interferometer along the ˆ x and ˆ y directions and consider a +-polarized gravitational wave 

traveling in the ˆ z direction, the spacetime interval for light travling along the ˆ x arm becomes:

  ds^2=0=g_{\mu \nu }dx^\mu dx^\nu =c^2 dt^2 - (1+h \sin (kz-\omega t))dx^2. 

   

        

 

(2.17)

 

Because h ≪ 1 ,

  cdt = \left [ 1 + \frac {h}{2} \sin (kz-\omega t) \right ] dx 













 





 

(2.18) 
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If the gravitational wave wavelength is much greater than the arm length, L , then the travel 

time of light is much less than the period of the wave: ∆ t ≪ 2 π /ω , we can simplify the 

integral for ∆ t :

  \Delta t = \left ( 1 - \frac {h}{2} \sin \omega t \right ) \frac {L}{c} 























 

(2.19)

 

When there is no gravitational wave, the travel time is, as expected, ∆ t = L/c . The 

gravitational wave causes a change in the travel time:

  \delta \Delta t = \left (\frac {h}{2} \sin \omega t \right ) \frac {L}{c}. 























 

(2.20)

 

The change in arm length as measured by the light is ∆ L = cδ ∆ t and the strain is then:

  \frac {\Delta L}{L} = \frac {h}{2} \sin \omega t 

















 

(2.21)

 

The ˆ y arm sees an opposite change in travel time and the path back from the mirror to the 

beamsplitter double the effect, so the apparent length change seen by a Michelson interfer- 

ometer is [18, 19]:

 \label {eq:simple_strain} \frac {\Delta L}{L} \approx h 









 

(2.22)

 

Using the result from Equation 2.16 and the LIGO arm length ( L = 4 k m ), a gravitational 

wave from coalescing neutron stars in the Virgo cluster would correspond to an arm length 

change of ∆ L ≈ 4 × 10− 18 m .

 

2.4 Laser Interferometer Gravitational Wave Observatory

 

The Laser Interferometer Gravitational-wave Observatory (LIGO) detectors are dual re- 

cycled, Fabry-Perot, Michelson interferometers located in Livingston, LA and Hanford, WA. 

Figure 2.2 is a schematic representation of a LIGO interferometer. Dual recycled refers to 

the power- and signal-recycling cavities of the LIGO detectors. The power-recycling cavity 

sends light that would normally be reflected back towards the laser and thus not utilized 
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back into the interferometer and increases the circulating power. The signal-recycling cavity 

allows the bandwidth of the interferometer to be tuned. Fabry-Perot cavities formed by the 

input (ITMs) and end test masses (ETMs) increase the effective arm length and the amount 

of interaction time between passing gravitational waves and light in the arms.

 

2.4.1 Detecting Gravitational Waves

 

Ultimately, it is the differential arm length (DARM) degree of freedom that is used by 

LIGO to detect passing gravitational waves. LIGO uses a DC readout scheme to sense 

the changes in differential arm length due to passing gravitational waves. This scheme is 

achieved by holding the length of the arms on the order of 10 pm away from resonance so 

that the photodiode signal responds linearly to the arm length changes, rather than being 

proportional to ∆ L2

 

In order for the DARM degree of freedom to have the required sensitivity, a number of 

auxiliary degrees of freedom must also be precisely controlled. The method used to control 

the lengths of the auxiliary degrees of freedom is the Pound-Drever-Hall technique [20]. This 

technique uses radio frequency sidebands added to carrier light to detect the length of a 

cavity. The resulting error signal gives information on how far away from resonance the 

carrier is in the cavity and can be used in a feedback loop to adjust either the length of the 

cavity or the frequency of the laser or both. Closing this feedback loop is called locking the 

cavity because the frequency of the laser is now locked to the cavity length, and a locked 

cavity can be used as a stable reference for another cavity. Differential-mode degrees of 

freedom (DoFs) are generally controlled using signals similar to the output of Michelson 

interferometers. Finally, the error signals for angular DoFs are obtained with measurements 

similar to the length DoFs as measured differentially across the beam. In LIGO, bringing 

the instrument up to full sensitivity requires locking a sequence of cavities before the DARM 

servo can be engaged [4, 2].
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2.4.2 Noise Sources

 

The output of the LIGO detectors is the combination of the gravitational wave signal 

(or lack thereof) and noise present in the detector [21]. By decreasing the amount of noise, 

the sensitivity of the instrument is increased. Noise in the detector comes from a variety 

of sources. We can use a noise budget like the one shown in Figure 2.3 to examine the 

contributions from the various noise sources across the frequency range of the interferometer. 

At high frequencies, LIGO is quantum shot noise limited. At lower frequencies, a combination 

of actuator and control noises dominate. In the middle, around 100 Hz, thermal noise and 

scattered light noise are the largest contributors to the noise floor.

 

Quantum Noise

 

Quantum fluctuations of the optical vacuum field enter the interferometer through the 

anti-symmetric port and fundamentally limit the sensitivity of the instrument. These quan- 

tum fluctuations create both shot noise and radiation pressure noise [22, 23]. In this section, 

we will review quantum noise for a simple Michelson interferometer. In the actual LIGO 

interferometer, the noise is complicated by the interferometer response including recycling 

cavities, resonant cavities, and optical losses. For a more complete description of quantum 

noise in the LIGO detectors, see [24].

 

The photodetector at the output port measures changes in optical power due to gravita- 

tional waves by counting the number of photons that arrive in a given time interval. This 

photon arrival rate is approximately governed by Poisson statistics. Given a time interval, 

τ , the number of photons, N , that arrive in that interval are given by N = nτ where n is 

the arrival rate. We can approximate the Poisson distribution with a Gaussian distribution 

that has a standard deviation equal to the square root of the total number of photons. We 

can then write the precision of a measurement as:

  \frac {\sigma _N}{N}=\frac {\sqrt {n\tau }}{n\tau }=\frac {1}{\sqrt {n\tau }} 































 

(2.23) 
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Or, in terms of power:

  \frac {\sigma _N}{N}=\sqrt {\frac {4\pi \hbar c}{\lambda P_{in} \tau }} 





















 

(2.24)

 

where Pin 

is the input power. We are free to choose the operating point of the interferometer 

to be anywhere from Pout 

= Pin 

(bright fringe) to Pout 

= 0 (dark fringe), but the general 

result is that photon shot noise in units of gravitational wave strain for a simple Michelson 

interferomter is inversely proportional to the square root of the input power:

 \label {eq:shot} h_{shot}(f)=\frac {1}{L}\sqrt {\frac {\hbar c \lambda }{2\pi P_{in}}} 



















 

(2.25)

 

This expression is frequency independent, so shot noise is white. Increasing input power 

decreases the shot noise and increases instrument sensitivity across all frequencies, but other 

effects must also be considered.

 

The conjugate phenomenon to shot noise is the fluctuating radiation pressure that im- 

pacts the test masses in the interferometer. The force on the mirror from light reflecting off 

of it is:

  F_{rad}=\frac {P}{c} 











 

(2.26)

 

The fluctuation of this force is due to the fluctuation in P :

  \sigma _F=\frac {1}{c}\sigma _P 













 

(2.27)

 

The force from the radiation pressure causes each test mass to move with the following 

frequency dependent spectrum:

  x(f)=\frac {1}{m(2\pi f)^2}F(f) 











 

(2.28)

 

The power fluctuations in the arms are anti-correlated, and since the interferometer is sen- 

sitive to differential displacements, the effect on the noise is doubled. Radiation pressure 
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noise in units of gravitational wave strain for a simple Michelson interferometer is then:

  h_{rp}(f)=\frac {2}{L}x(f)=\frac {1}{mf^2L}\sqrt {\frac {\hbar P_{in}}{2\pi ^3c\lambda }} 



























 

(2.29)

 

We see that this radiation pressure noise is frequency dependent and proportional to the input 

power. So an increase in power will reduce shot noise but increase radiation pressure noise. 

The 1 /f 2 frequency dependence of the radiation pressure noise means that it dominates at 

lower frequency and shot noise dominates at higher frequencies.

 

Prior to the third observing run, a couple of steps were taken to reduce the effects of 

quantum noise. First, a squeezed light injection system was installed [24]. Squeezed light 

injection allows reducing one quantum component (in this case shot noise) while increasing 

the other (radiation pressure). Second, the input laser power was increased, which, as we 

can see in Equation 2.25, reduces shot noise as the square root of the power increase. The 

improved sensitivity from these upgrades can be seen in Figure 2.3 when comparing the 

measured sensitivity from the first two observing runs with the sensitivity from the third 

observing run. The improvement from squeezing alone led to a 12% and 14% increase in 

binary neutron star inspiral range at LIGO Hanford and Livingston, respectively. Future 

upgrades will allow for frequency-dependent squeezing so that at lower frequencies, radiation 

pressure can be reduced (and shot noise increased) while at higher frequencies, shot noise is 

lowered at the expense of increased radiation pressure noise. Increased input laser power is 

also planned.

 

Thermal Noise

 

Thermal motion couples to the gravitational wave channel as displacement noise. The 

noise can come from the test mass suspensions, coatings, and substrates.

 

Thermal noise levels are calculated by measuring the mechanical losses of materials and 

then using the fluctuation-dissipation theorem to compute the thermal fluctuations [25, 26].
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The dominant thermal noise term is coating Brownian noise, which causes a change in 

arm cavity length. The source of this noise is mechanical dissipation in the mirror coatings. 

The aLIGO mirror coatings are made by ion-beam sputtering alternating layers of S iO2 

and 

T i - T aO5 

(titanium doped tantalum pentoxide) [27]. Once coated, the mirrors are polished 

to limit power loss in the arms. The target for round trip losses is 75 ppm , which gives a 

potential power buildup in the arms of 1 / 75 ppm = 1 . 3 × 104 times the input power.

 

Thermal noise also comes from the substrate of the optics. The contribution from the 

test masses is small, but a contribution from the composite signal-recycling mirror (SRM) in 

the second observing run led to it being replaced by a monolithic mirror prior to the third 

observing run. Changing from the aluminum and fused-silica composite to the monolithic 

fused-silica SRM eliminated that source of thermal noise [2].

 

Thermal motion of the suspension fibers is transferred to the test masses and results in 

thermal noise. The suspension fibers are welded to silica ears attached to the 40 kg test mass 

and penultimate mass. The fibers are constructed to minimize the noise transmitted in the 

sensitive band of the interferometer. The most visible feature from the suspension fibers are 

the violin modes . The violin modes of the suspension fibers are actively damped, but still 

show up in the gravitational wave channel at around 500 Hz and harmonics.

 

Seismic Noise

 

As mentioned in the previous section, the test masses are suspended from silica fibers. 

These silica fibers form a 4-stage pendulum and offer passive seismic isolation that goes as 

1 /f 8 above the suspension resonances at around 0 . 4Hz . In addition to the passive isolation, 

each stage of the suspension can be actively damped. The upper 3 stages are damped by 

optical shadow sensor and magnetic actuators (OSEMs) and the bottom stage of the end 

test masses can be actuated on by an electro-static drive. The structure from which the 

suspension hangs is mounted to an optical table with multiple stages of active and passive 

seismic isolation as shown in Figure 2.4. Two levels of isolation are provided by the internal 
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seismic isolation (ISI) system and an additional layer of isolation comes from the hydraulic 

external pre-isolator (HEPI) system. The result of all of this seismic isolation is that the by 

the time the ground motion is transferred to the test masses, it has been reduced by as much 

as ten orders of magnitude [28]. Another way to consider this impressive performance is by 

looking at the noise budget in Figure 2.3 and seeing that the seismic noise contribution lies 

far below noise floor of the interferometer.

 

Residual Gas Noise

 

Other than the pre-stabilized laser system, all of the rest of the core components of 

LIGO lie inside the vacuum system. There are vacuum chambers called Basic Symmetric 

Chambers (BSCs) that house the test masses and a series of smaller Horizontal Access 

Module (HAM) chambers that house the smaller optics like the power- and signal-recycling 

mirrors. There are also a series of vacuum tubes that connect the various chambers to each 

other, including the two 4-km long, 1.2-m diameter beamtubes that make up the arms of 

the interferometer. Pressure inside the vacuum system is held as low as 1 × 10− 9 Torr by ion 

pumps placed throughout the vacuum system and by liquid nitroge cryogenic pumps located 

at both ends of each arm. The pumps must operate constantly to overcome the outgassing 

from components placed inside the vacuum system and from any leaks that may be present 

in the system. Any residual gas in the vacuum system can cause phase and/or gas damping 

noise in the interferometer.

 

Gas molecules that pass through the beam of the interferometer change the phase of the 

light and introduce noise into the gravitational wave channel. This effect can be modeled as 

the impulse disturbance to the phase of the laser field as a gas molecule passes through the 

field and then integrating over all of the particles in the interferometer [30]. The result is a 

noise that is mostly white. Phase noise is the dominant source of residual gas noise above 

approximately 60 Hz.

 

A leak in the LIGO Livingston X-arm beamtube had caused pressures to rise from a few 
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nanotorr to tens of nanotorr. The leak was pinpointed during the O3 commissioning break 

in October 2019 and subsequently repaired. A measurement of interferometer noise taken 

before the leak was fixed showed excess noise from 400-1000 Hz which would be consistent 

with excess gas phase noise [2].

 

The other way that residual gas creates noise is through squeezed film damping. The 

Advanced LIGO End Test Masses (ETMs) were separated by only 5 mm from the End 

Reaction Masses (ERMs) behind them. The proximity of the two surfaces makes it easy for 

residual gas to accumulate. One way to think about the noise is that if the ETM moves 

closer to the ERM, some of the residual gas is squeezed out of the space between. This leads 

to a pressure drop and an associated force on the ETM. Another way to think about the 

noise is to consider the repeated impacts of gas molecules as they traverse the gap. Modeling 

has shown both methods to be equivalent. Gas damping noise is frequency dependent and 

drops off as 1 /f 2. [31]

 

Prior to the start of O3, the ERMs were replaced with Annular End Reaction Masses 

(AERMs) which have a hollow center section such that the face seen by the ETM looks like 

a donut. This shape reduces the surface area in the gap, and reduces the force generated by 

residual gas. The change to AERMs is expected to have reduced gas noise below 100 Hz by 

a factor of 2.5 [2].

 

Scattered Light

 

As the main beam works its way from laser to output port, each time it encounters an 

optical component in its path, a small amount of light scatters out of the main beam. This 

scattered light introduces both phase and radiation pressure noise into the gravitational wave 

channel. We can write down a simple formula for the noise introduced by scattered light 

[32]:

 \label {eq:scatter_simple} h_{scat}(f)=\sqrt {\frac {P_{scat}}{P_{main}}}{TF}\cdot x_{\rm scat}(f)\cdot 2k 













   

 

(2.30) 
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where Pscat 

and Pmain 

are the power in the scattered and main beams respectively, T F 

is the optical transfer function from the mirror at which the scattered light recombines 

with the main beam to the output port, xscat 

is the amplitude of the displacement of the 

scattering surface at a given frequency, f , and k is the wavenumber of the light in the 

interferometer. Every mirror in the interferometer is a source of scattered light and every 

surface, from suspension components to vacuum chambers, can be a scattering surface. This 

makes measuring scattered light noise very difficult, since, as we can see from Equation 2.30, 

we need to know not only how much each surface is moving, but also how much power is 

incident on that surface. And measuring the motion directly is not always helpful, as it is the 

relative motion between the scattering surface and the scattering mirror that is important. 

So a particular vacuum chamber may be moving only as much as the ground on which it 

sits, but the optic inside the vacuum chamber may be following an optic in another chamber 

via active feedback control loops, so the relative motion may be large.

 

Finding and mitigating scattered light is largely an iterative process. Areas with high 

coupling of scattered light to the gravitational wave channel are identified by looking for cor- 

relation between sensors like accelerometers and seismometers and noise in the gravitational 

wave channel and also by performing tests where mechanical shakers are used to increase 

the motion of the vacuum chambers. Once an area is identified, a mitigation strategy is 

developed. This could include installing baffles to absorb and/or deflect the scattered light 

or changing the control scheme of the interferometer to reduce the relative motion. Once 

mitigation has been put in place, the tests are repeated to quantify any improvements. If 

the source is properly mitigated, then the process repeats by finding the next loudest source 

of scattered light noise.

 

2.5 Observations

 

On 14 September 2015, the LIGO detectors made the first observation of gravitational 

waves from a binary black hole merger. Another black hole merger was observed on 26 
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December 2015 and a third event was detected on 12 October 2015 [33]. These observations 

were made during the first LIGO observing run (O1) which ran from September 2015 through 

January 2016.

 

The first detection, GW150914, was a result of two black holes colliding 410+160 

− 180 

Mpc 

away. The two black holes were 36+5 

− 4M⊙ 

and 29+4 

− 4M⊙ 

and the resulting black hole was 

62+4 

− 4M⊙. 3 . 0+0 . 5 

− 0 . 4M⊙c
2 was radiated away in the form of gravitational waves [34]. The signal 

seen by LIGO lasted approximately 0.2 seconds and swept up in frequency from around 35 

Hz up to 150 Hz [12].

 

The second observing run (O2) started on 30 November 2016 and ended 25 August 2017. 

During the run, 3 more binary black hole mergers were detected: GW170104 [35], GW170608 

[36], and GW170814 [37]. GW170814 was the first detection made by a 3 detector network 

with the VIRGO detector joining the LIGO detectors in the observation. The addition of 

the 3rd detector improved the sky localization of the source from 1160 deg2 to 60 deg2.

 

On 17 August 2017, the LIGO and VIRGO detectors detected gravitational waves from 

a binary neutron star inspiral for the first time [38]. At the time of the detection, named 

GW170817, the source was in a ’blind spot’ for the VIRGO detector, so the signal did not 

show up in the VIRGO data, but this lack of signal helped improve the sky localization to 

28 deg2. Shortly after the signal passed through the gravitational wave detectors, a γ -ray 

burst was detected by the FERMI Gamma-ray Burst Monitor. The first optical counterpart 

was observed 11 hours later by the SWOPE telescope and a campaign of electromagnetic 

observations continued over the following weeks and months [39].

 

The third observing run (O3) is divided into two parts. O3a ran from April 1 until 

September 30, 2019 and O3b ran from November 1, 2019 until March 27, 2020, when oper- 

ations were forced to stop by Covid-19. During O3, 56 candidate gravitational wave events 

were identified through open public alerts to the astronomical community [2]. Analysis is 

ongoing at the time of writing, but a few notable events have been reported in journals.

 

GW190425 was a binary neutron star merger that was seen by LIGO Livingston. LIGO 
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Hanford was not operating and the VIRGO signal was too weak to aid in detection, but 

it was used for parameter estimation. The signal seen by LIGO Livingston lasted for 128 

seconds and swept up in frequency from 19.4-2048 Hz. The binary system is unique in that 

the total mass of the system (3.3-3.7 times the mass of the Sun) is larger than any other 

known binary neutron star systems [40].

 

GW190412 [41] and GW190814 [42] were events whose binary systems had asymmetric 

masses. Because of the mass difference, these types of systems will emit gravitational radia- 

tion that, while still dominated by the quadrupole, will contain higher multipoles. For both 

events, this was found to be the case providing yet another verification of general relativity. 

GW190814 was unique not just because its mass ratio was the most uneven measured to 

date, but also because the smaller object had a mass of 2 . 59+0 . 08 

− 0 . 09M⊙. It was most likely a 

black hole, but it could have been a neutron star. In either case, it was either the largest 

neutron star or the smallest black hole found in a double compact-object system [42].

 

The signal from GW190521 lasted 0.1 s and swept from 30-80 Hz with peak strength 

at 60 Hz. This peak frequency suggested that it came from a massive system. Analysis 

showed that the the component masses were 85+21 

− 14M⊙ 

and 66+17 

− 18M⊙ 

and the total mass 

was 150+29 

− 17M⊙. GW190521 is the heaviest binary black hole system ever observed and the 

remnant black hole is the first intermediate mass black hole ever observed [43]. Since this 

event lacked gravitational wave energy at high frequencies, its detection relied on LIGO’s 

sensitivity in the frequency range affected by noise from scattered light, the main subject of 

this dissertation.
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Figure 2.2. Schematic layout of a LIGO interferometer. The laser originates with the pre- 

stabilized laser (PSL). An electro-optical modulator (EOM) adds radio sidebands which are 

used for interferometer controls. The beam then passes through the input mode cleaner 

(IMC) where the beam profile is cleaned up. The input test masses (ITMs) and end test 

masses (ETMs) make up the arm cavities. The power-recycling mirror (PRM) and signal- 

recycling mirror (SRM) are part of the power- and signal-recycling cavities respectively along 

with the ITMs and the beamsplitter (BS). The reflected power photodiode (REFL) senses 

light coming back from the interferometer and the power-recycling pick-off (POP) senses 

light coming from the PSL. The output Faraday isolator (OFI) only allows light to pass 

from the interferometer to the output port and not vice versa. The OFI also serves as the 

location where squeezed light is injected via the optical parametric oscillator (OPO). The 

output mode cleaner (OMC) removes the sidebands from the carrier light and the output 

photodiodes (DCPDs) sense the change in carrier light caused by changes in differential arm 

length. [2]
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Figure 2.3. LIGO Livingston noise budget during the third observing run [2].

 

Figure 2.4. A schematic and CAD representation of the LIGO seismic isolation systems. 

The test masses have up to 7 layers of isolation from 3 different systems. The first layer of 

isolation comes from the hydraulic external pre-isolator (HEPI) system. The next two levels 

of isolation are provided by the internal seismic isolation (ISI) system. From the ISI optical 

table, the quadruple stage pendulum suspension is hung, providing the final four layers of 

isolation [29].
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CHAPTER 3. NOISE FROM SCATTERED LIGHT

 

3.1 Introduction

 

The simplest picture for scattered light noise involves three events: light scatters from 

some scattering mirror , light reflects from some scattering surface , and light re-combines 

with the main beam at the original scattering mirror. The scattering surface is moving 

relative to the optical cavity, so the scattered light picks up phase noise due to the path 

length modulation. The scattered field interferes with the static field in the interferometer 

and causes power fluctuations, so scattered light also causes radiation pressure noise.

 

Light can scatter from the main beam for a number of reasons; surface imperfections lead 

to even high-quality mirrors scattering small amounts of light in non-specular directions. The 

middle panel in Figure 3.1 shows BRDF scatter. Light hits the mirror and then scatters ac- 

cording to the Bi-directional Reflectivity Distribution Function (BRDF). The BRDF is either 

the measured or modeled distribution of scattered light reflecting from a mirror. Highly pol- 

ished surfaces like the LIGO test masses generally have a BRDF with an angular dependence 

whereas scattering surfaces like vacuum chamber walls have a constant BRDF. The third 

panel shows a ghost beam reflecting from the anti-reflective (AR) coating on the rear of the 

mirror. The front surface of the mirror has a highly-reflective (HR) coating which reflects 

most of the light (anywhere from 50% reflected to only a few ppm transmitted), but some 

amount of light is transmitted through the coating. The rear surface has been AR coated 

to limit the amount of light reflected, but some light will reflect. An additional source of 

scatter is the Gaussian tail of the laser beam. The beam radius is defined as the distance 

out to which the intensity has dropped to 1 /e2. The optics are sized larger than the beam 

radius, and baffles are installed to limit the Gaussian tail, but as we will see in Chapter 5, 

this light from the Gaussian tail can cause noise.

 

The differential motion between scattering surface and scattering mirror is due to a com- 

bination of seismic motion of the scattering surface and the interferometer controls pushing 
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Figure 3.1. Illustration showing how scattered light originates. BRDF scatter is from im- 

perfections on the highly-reflective coating on the mirror. Ghost beams originate when light 

reflects from the anti-reflective coating on the rear of the optic.

 

the scattering mirror relative to the scattering surface. This differential motion usually can- 

not be measured directly, so sensor data has to be propagated through a model to obtain an 

estimate for the differential motion.

 

In the following sections, we will derive an expression that allows us to express the noise 

from scattered light in terms of the effective gravitational wave strain, hef f , necessary to 

generate the same signal.

 

3.2 Effects of Gravitational Waves and Scattered Light on a Complex Electric 

Field

 

We can approximate the light circulating in the arms (ignoring things like the Fabry-Perot 

storage time and spatial filtering of the arm cavities) as a complex electric field:

  E(x,t)=E_0\exp (i(\omega t -kz+\phi (t))) 

       

 

(3.1)

 

where E0 

is the amplitude of the field in the arm cavity, ω is the angular frequency, k = 

2 π

 

λ 

is the laser wave number, z is the distance to an arbitrary plane of reference, and ϕ ( t ) is 

the phase due to some external source such as gravitational waves or scattered light. If we 

consider a simple sinusoidal motion with amplitude ϕm 

and frequency ωm 

and assume that 
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z = 0 , then the field in the cavity is:

 \label {eq:field} E(t)=E_0[i\omega t]\sum _{n=-\infty }^{\infty }i^nJ_n(\phi _m)\exp [in\omega _{m}] 

 







 

(3.2)

 

where we’ve used the Bessel function expansion identity. If we consider a gravitational wave, 

the strain, h , will cause a test mass displacement of xG 

= hL where L is the arm length 

of the interferometer. The resulting phase shift caused by the gravitational wave will be 

ϕG 

= 2 k xG. For a gravitational wave, this phase shift will be small such that ϕG 

≪ 1 . 

This means that in Equation 3.2, only the n = 0 , ± 1 terms are appreciable and we can 

approximate it as a phase modulation:

 \label {eq:gwave_field} E_{G}(x,t)\simeq E_0exp[i\omega t](1+ikx_{G}\exp [\pm i\omega _{G}t]) 

  

  



 

(3.3)

 

The field from scattered light carries phase noise due to the path length modulation that 

results from the differential motion of the scattering surface. The scattered field takes on the 

form of Equation 3.2, but has an additional amplitude transfer coefficient, A , which takes 

into account the fact that only a portion of the light in the main beam scatters:

 \label {eq:scatter_field} E_{scat}(t)=A E_0[i\omega t]\sum _{n=-\infty }^{\infty }i^nJ_n(\phi _{scat})\exp [in\omega _{scat}], 

 







 

(3.4)

 

where ϕscat 

= 2 k xscat 

and xscat 

is the amplitude and ωscat 

is the frequency of the displacement 

of the scattering surface. When k xscat 

≪ 1 , we get a phase modulation as in the gravitational 

wave case. When k xscat 

≫ 1 , the Bessel functions up to n ≈ 2 k xscat 

must be considered. 

The result is that there will be sidebands at frequencies up to ωmax 

= 2 k xscat 

ωscat 

[44].

 

3.3 Amplitude Transfer Coefficient
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We can express the amplitude transfer coefficient, A , in Equation 3.4 in terms of power 

in the scattered and interferometer beams:

 \label {eq:coefficient} A^2 \equiv \frac {\delta I}{I} 









 

(3.5)

 

Though it is the ratio of the fields that determines the noise in the gravitational wave channel, 

it is often easier to work with the power when determining the amplitude transfer coefficient. 

The coefficient will be different based on where in the interferometer the scattering takes 

place.

 

One example, discussed in Chapter 6 involves light scattering from a test mass, then 

scattering from a baffle, and then re-combining with the main beam. In this case, we have 

three scatter events that we need to consider: BRDF scatter from the test mass, BRDF 

scatter from the baffle, and BRDF scatter from the test mass. The ratio of power is then:

 \label {eq:bt_coefficient} \begin {split} \frac {\delta I}{I} &= \beta _{\rm mir} \cdot \beta _{\rm baf} \cdot \beta _{\rm mir} \cdot \frac {d \Omega }{r^2} \\ &= \beta _{\rm mir}^2 \beta _{\rm scat} \frac {d \Omega }{r^2}, \end {split} 



































 

(3.6)

 

where βmir 

and βbaf 

are the BRDFs of the test mass and baffle respectively, d Ω is the solid 

angle subtended by the baffle, and r = R / sin θ is the distance from the mirror to the 

backscattering surface. For the mirrors, the BRDF is evaluated by a beam with normal 

incidence and for the baffles, the BRDF is integrated over the range of appropriate incidence 

angles.

 

Another example that we will consider in Chapter 5 is light that is transmitted through 

the test mass, reflected from the reaction mass, and transmitted again through the test mass 

to re-combine with the main beam. In this case, we need to consider the power transmission 

of the test mass, Ttm, and also need to know how much power is reflected from the reaction 
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mass, Rrm. The power ratio in this case is:

 \label {eq:anthro_coefficient} \begin {split} \frac {\delta I}{I} &= T_{\rm tm} \cdot R_{\rm rm} \cdot T_{\rm tm} \\ &= T_{\rm tm}^2 R_{\rm rm}, \end {split} 













 







 

(3.7)

 

For this example, the integral over the Gaussian tail of the beam has been included in the 

reaction mass reflection term.

 

3.4 Transfer Functions

 

We have an expression for the scattered light electric field. We are interested in how 

scattered light affects interferometer output, so we need to convert this scattered field into 

units of interferometer output. We want to know the equivalent gravitational wave strain, 

heff , that would generate the same signal in the interferometer output as the scattered light. 

To do this, we use transfer functions that take the phase and amplitude noise (expressed as 

Relative Intensity Noise (RIN)) of the scattered field to the effective strain.

 

3.4.1 Phase Noise

 

As we saw earlier, a passing gravitational wave adds a phase shift ϕG 

= 2 k xG 

on the main 

beam. From Equation 3.3 we can see that a passing gravitational wave adds the following 

field to the main beam:

 \label {eq:phase_gwave} \delta \psi _{mb} = i2k\delta L \psi _{mb} 





 

(3.8)

 

In the case of a gravitational wave, δ L = hL , we can write:

 \label {eq:phase_gwave_ratio} \frac {\delta \psi _{mb}}{\psi _{mb}} = i(2kL)h. 









 

(3.9) 
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Similarly, we can use Equation 3.4 to write the scattered field added to the main beam:

 \label {eq:phase_scat_ratio} \frac {\delta \psi _{mb}}{\psi _{mb}} = \left ( \frac {\delta I}{I} \right ) ^{1/2}e^{i\phi _{scat}} = \left ( \frac {\delta I}{I} \right ) ^{1/2} (\cos \phi _{scat} + i \sin \phi _{scat}). 

































  

 

(3.10)

 

If we compare Equations 3.9 and 3.10, we see that the imaginary part of Equation 3.10 has 

the same form as the signal from the gravitational wave. We can solve for h and find an 

expression for the scattered light that adds phase noise to the main beam as the ratio 

δ I

 

I 

and 

is read out from a LIGO arm as though it were a gravitational wave signal h ( t ) [45]:

 \label {eq:h_phase} h(t) = \left ( \frac {\delta I}{I} \right )^{1/2} S(t) \left ( \frac {\lambda }{4\pi L} \right ), 



























 

(3.11)

 

where S ( t ) = sin ϕscat( t ) . We can now relate the spectral density of the effective strain noise, 

h̃ ( f ) , to the spectral density of S̃ ( f ) by taking the Fourier transform of S ( t ) :

 \label {eq:h_phase_f} \tilde {h}_{\rm phase}(f) = A \left [ \frac {h_{\rm eff}}{\Phi } \right ] \tilde {S}(f), 

 













 

(3.12)

 

where A is again the amplitude transfer coefficient and we have used the transfer function 

from phase noise to effective strain:

 \label {eq:phase_transfer} \frac {h_{\rm eff}}{\Phi } = \frac {1}{2}\frac {\lambda }{4 \pi L} 





















 

(3.13)

 

The scattered field will split between the common and differential degrees of freedom. Only 

the differential degree of freedom is sensed by the gravitational wave channel, so the factor 

of 

1

 

2 

in Equation 3.13 is added to account for this [46].

 

3.4.2 Amplitude Noise
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The amplitude quadrature of the scattered field is represented by the real part of Equation 

3.10. The scattered field builds up with the cavity signal gain, Γ , and the total field is:

 \label {eq:rad_field} \psi _{\rm mb} + \delta \psi _{\rm mb} \Gamma = \psi _{\rm mb}(1+(\delta I/I)^{1/2}\, \Gamma \cos \phi _{scat} ) 



       

 

(3.14)

 

The modulus square of the total field gives us the total power. The changing part of the 

power is then:

 \label {eq:rad_power} \delta P = 2 P_0 (\delta I/I)^{1/2}\, \Gamma C(t), 

  

 

(3.15)

 

where C ( t ) = cos ϕscat( t ) . The power fluctuation leads to a changing force on the test masses, 

displacing them as a result. The force is Fscat 

= 2 δ P /c so we need to divide out the mass 

of the test mass, M , to get the acceleration and then divide twice by the angular frequency, 

2 π f , to get the displacement. We can now obtain the effective strain noise spectrum [47]:

 \label {eq:rad_spectra} \begin {split} \tilde {h}_{\rm rad}(f) &= \frac {2}{M(2\pi f)^2}\frac {2\delta \tilde {P}}{cL} \\ &= A \left [ \frac {h_{\rm eff}}{RIN} \right ] \tilde {C}(f), \end {split} 































 

(3.16)

 

where we have defined the radiation pressure transfer function in terms of relative intensity 

noise (RIN) as:

 \label {eq:rad_transfer} \frac {h_{\rm eff}}{RIN} = 2 P_0 \frac {\Gamma }{M} \frac {2}{cL} \frac {1}{(2\pi f)^2}, 





























 

(3.17)

 

3.5 Equivalent Strain Noise

 

We can now express the effective strain noise from scattered light with the folowing 

equation:

  \label {eq:strain} \tilde {h}_{eff}(f)= A \left [ \frac {h_{\rm eff}}{\Phi } \right ] \tilde {S}(f) + A \left [ \frac {h_{\rm eff}}{RIN} \right ] \tilde {C}(f) 

  











 













 

(3.18)
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3.6 Upconversion from Fringe Wrapping

 

The type of noise created by scattered light depends on the RMS displacement of the 

scattering surface relative to the optical cavity. If the displacement is less than the wavelength 

of the laser, then the noise seen in the detector is linear and appears at the same frequency 

as the motion. If the displacement, however, is larger than the wavelength of the laser, 

then fringe wrapping occurs and the noise is upconverted to higher frequencies. We can see 

the non-linearity in the terms S̃ ( f ) and C̃ ( f ) (used previously in Equations 3.12 and 3.16 

respectively):

  \tilde {S}(f)=\int ^\infty _{-\infty } \sin {\left (\frac {4\pi x_{scat}(t)}{\lambda }\right )}\rm exp\, (i \omega t)\, dt, 


















 

 

(3.19)

  \tilde {C}(f)=\int ^\infty _{-\infty } \cos {\left (\frac {4\pi x_{scat}(t)}{\lambda }\right )} \rm exp\, (i \omega t)\, dt, 


















 

 

(3.20)

 

In a spectrum of scattered light noise, scattered light in the linear regime would appear as 

a peak at the frequency of the motion of the scattering surface. Upconverted scattered light 

appears in spectra scattering shelves as illustrated in Figure 3.3. In a spectrogram, scattered 

light in the linear regime is simply a line at the frequency of motion. Upconverted scattered 

light appears in spectrogram as arches as shown in Figure 3.2. Figures 3.3 and 3.2 are both 

plotted from the same time series data. The four scattering shelves in Figure 3.3 correspond 

to the four arches in Figure 3.2.

 

Also plotted (as colored lines) in Figure 3.2 are the predicted fringe frequencies . To 

obtain this prediction, we use the following:

 \label {eq:velocity} f_{\rm fringe, n}(t) = \left | \frac {2n v_{scat}(t)}{\lambda } \right |, 















 

(3.21)

 

where n represents the number of bounces. In this equation, we are dividing the velocity of 

the scattering surface by half the wavelength. If the scattering surface moves by λ/ 2 , then 

it has moved through the entire fringe . Dividing the velocity by λ/ 2 puts us in units of 
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Figure 3.2. Spectrogram showing scattering arches. The fringe frequency for single and 

multiple bounce paths is calculated from scattering surface velocity and overlaid [48].

 

"fringes per second" and gives us the fringe frequency. In this example, the peak frequency 

of the arches is changing with time indicating that the peak velocity of the scattering surface 

is also changing with time.
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Figure 3.3. Spectra of measured scattering noise (" h ( t ) scattering") plotted along with a 

model of the noise ("phase + radiation") and a quiet spectra (" h ( t ) quiet") for reference 

[48]. The multiple scattering shelves seen here correspond to the multiple arches in Figure 

3.2
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CHAPTER 4. STRAY LIGHT (IMPROVED) CONTROL

 

As the second LIGO observing run (O2) was kicking off at the end of 2016, a project 

called Stray Light (Improved) Control (SLiC) was also getting its start. SLiC would be a 

project to design and install baffles in the LIGO interferomters in order to reduce the noise 

from scattered light. The baffles would be installed at the conclusion of O2. The main focus 

of SLiC was the recycling cavities, but baffles were also installed near the end test masses 

on the structures used to steer an auxiliary laser to and from the test masses. The project 

started with an initial set of baffles that were installed after the conclusion of O2. These 

baffles became known as SLiC Part A and subsequent improvements in the output arm of the 

interferometer became know as SLiC Part B. This chapter discusses the design, installation, 

and testing of both phases of SLiC.

 

4.1 SLiC Part A

 

Tests performed during O2 showed that the coupling of chamber motion to the gravita- 

tional wave channel via scattered light was highest near the output port of the interferometer 

[49]. Photos like Figure 4.1 taken with the interferometer in full lock showed that there were 

many reflective surfaces in close proximity to the optics in this area. This combination of 

testing and photographing was used to determine the priorities for SLiC.

 

From Figure 2.2 we can see that the output arm of the interferometer houses the signal- 

recycling cavity (SRC), the output Faraday isolator (OFI), the optical parametric oscillator 

(OPO), and the output mode cleaner (OMC). With multiple optics sharing optical tables, it 

would have been very difficult to isolate the source of the scattered light to a single mirror. 

The OMC was baffled with a shroud that completely enclosed the structure in 2015 [50]. 

The OFI lies in transmission of the signal recycling mirror (SRM), so it receives less power 

than the components in the SRC and was thus ranked with a lower priority than the mirrors 

of the SRC. The OPO was only installed after the conclusion of O2, so it could not have 
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been the source of the scattered light seen during O2. Because of these factors, the mirrors 

of the SRC were chosen as the location for the installation of new baffles following O2. And 

because the optics of the SRC share the same suspension structure design as the optics in 

the power-recycling cavity (PRC), the PRC would also receive new baffles. The mirrors of 

the PRC share optical tables with the mirrors of the input mode cleaner (IMC), so baffles 

were also designed for the input mode cleaner.

 

Another area that had shown previously high coupling was near the end test masses. 

One likely source for the coupling was the structure that holds the mirrors, which guide the 

photon calibrator (PCal) beam to and from the end test mass [51]. This structure spans 

the diameter of the beam tube, lies normal to the beam propagation direction, and is made 

of highly reflective aluminum. Its location had also been identified by vibration injections 

(where the motion of the vacuum system is driven by a mechanical device) as having higher 

coupling than the surrounding areas, so the PCal structure was also chosen as a location for 

baffling.

 

4.1.1 Design and Installation

 

There were numerous constraints that had to be considered when designing the SLiC 

baffles. The primary goal of the baffles was to reduce the amount of noise from scattered 

light. To accomplish this, they would need to reflect less light than the surfaces that they 

were covering. The new baffles would also need to move the same or less than the surfaces 

they were covering in order to reduce the noise. Beyond solving the problem of scattered 

light, the new baffles also needed to avoid creating noise in other ways. The SLiC baffles 

would need to be vacuum compatible and the apertures through which the main beam passes 

needed to be properly sized and aligned. Considerations for handling and installation also 

needed to be properly accounted for.

 

Structural
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The suspension structures to which the SLiC baffles would be mounted are themselves 

mounted to the HAM-ISI tables which are seismically isolated. By mounting the baffles to 

the suspension structure, the baffles would also be seismically isolated. Vibrational modes of 

the baffle surface could lead to excess motion at anti-nodes, so passive damping was included 

in the design of the baffles. The passive damping was accomplished by sandwiching Viton 

o-rings between the suspension structure and the baffles at all of the attachment locations.

 

The baffles were designed to be mounted at an angle such that the specular reflections 

off of the baffles would be directed away from any optics. Where possible, the specular 

reflections were directed towards secondary baffles that offered additional attenuation via 

their low reflectance.

 

Coatings

 

In order to reduce the noise from scattered light, the new baffles would need to limit 

the amount of scattered light returning to the main beam. The baffles themselves would be 

made from polished stainless steel and then coated with a thin layer of material that would 

provide the required optical properties. Several coatings were evaluated by Alena Ananyeva 

at Caltech and ranked based on the following criteria: specular reflectance, BRDF, vacuum 

compatibility, ease of handling, and cost.

 

Specular reflectance and BRDF must be considered together to get the best coating. 

A highly polished mirror, for example, would have a very low BRDF, but the specular 

reflectance would be high. A rough surface, like the vacuum chamber walls, has a low 

specular reflectance, but the BRDF is high. If both specular reflectance and BRDF are low, 

then the coating is absorbing some of the power and the power that is reflected is contained to 

the specular direction. As mentioned in the previous section, the SLiC baffles were mounted 

at an angle with respect to the main beam, so the scattered power is directed away from the 

main beam. Also, where possible, the specular reflection is aimed at a secondary baffle.

 

When the evaluation was complete, two coatings were chosen: diamond-like carbon 
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Table 4.1. Optical properties of the coatings chosen for SLiC baffles. Diamond-like carbon 

(DLC) has the best optical properties, but is expensive and can only be applied to smaller 

parts, so black nickel was chosen as a backup option. These values were obtained at 57◦ 

angle of incidence.

 

Stainless Steel Black Nickel DLC

 

BRDF ( sr− 1) 8 × 10− 3 1 × 10− 3 2 × 10− 4 

R2 2 × 10− 2 6 × 10− 3 5 × 10− 5

 

(DLC) and black nickel. Table 4.1 summarizes the optical properties of these two coat- 

ings along with uncoated stainless steel.

 

DLC has better optical properties than black 

nickel, but it is more expensive and the size of parts that can have the coating applied is 

limited. Both materials were robust while handling and had similar outgassing properties 

when tested for vacuum compatibility.

 

Ray Tracing

 

Zemax is commercial ray tracing software that was used in the baffle design process. In 

Zemax, a 3-D model of the optical system being studied is created. From a source defined in 

the model, rays are launched. The source definition determines the distribution of emitted 

rays and everything from a point-like source emitting one ray in one direction to a 360◦ 

source emitting rays in all directions can be modeled. The source is also defined to have 

some power and that power is divided among the rays according to the source definition. The 

rays represent the straight line path that photons would take leaving the source. Each ray is 

propagated through the model until it encounters an object. Objects can reflect, absorb, or 

transmit any rays that land on them. Reflection can be defined to be specular only or it can 

include scattering. When a ray encounters an object, the properties of the object determine 

the path of the ray following the interaction with the object. If the object is absorbing, the 

path for the ray simply ends. If it reflects, scatters, or transmits, then the ray continues to 

propagate until encountering the next surface. A ray can also split when it encounters an 

object. For example, a ray encountering a 50 / 50 beamsplitter would split into two rays: one 
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continuing through the beamsplitter with half of the original power and one reflecting at 45◦ 

with half of the original power. A pre-defined, finite number of rays are launched from the 

source and their paths are traced through the model with the power in each ray also being 

tracked. The result of the ray tracing is displayed as the paths of the rays are drawn over 

the 3-D model of the optical system.

 

SolidWorks is computer-assisted design (CAD) program that has been used extensively in 

the design of the LIGO interferometers. The SolidWorks model of the LIGO interferometers 

includes the precise locations of the attachment points to which the baffles would be mounted, 

so the preliminary design for the baffles was made in SolidWorks. The Zemax model of the 

LIGO interferometer includes detailed models of the optics throughout the instrument, but 

only includes rough polygons for the other components. When detailed analysis is required, 

the 3-D SolidWorks model for a part can be imported into the Zemax model. The SLiC 

baffles were first modeled in SolidWorks to align them to the suspension structures. They 

were then exported to Zemax where the optical alignment could take place. The first part 

of the alignment was to locate the apertures in the baffles and to ensure that each aperture 

had the proper clearance. The second part of the alignment made sure that ghost beams 

that were meant to be dumped on the baffles actually landed on the baffles as intended.

 

Installation

 

O2 ended on August 25, 2017 and installation of the SLiC baffles began the following 

week. The baffles were manufactured, coated, and shipped from Caltech. Prior to the 

end of O2, the baffles were received at the observatories and inspected for any potential 

damage. Special care had to be taken when handling the baffles throughout the installation 

process. Bare hands were never allowed to touch the baffles as the oils would have been a 

vacuum contaminant and could have damaged the coatings. The baffles were sprayed with 

ionized nitrogen prior to installation in the chamber to remove any loose dust particles and 

to discharge any static electricity that had accumulated in the coating.
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At LIGO Livingston, the baffles were installed in phases. The first set of baffles were 

installed in HAM2 and HAM5 in August and September of 2017. HAM2 and HAM5 are 

symmetric vacuum chambers in the power- and signal-recycling cavities, respectively. HAM2 

houses two of the three mirrors that make up the power-recycling cavity and two of the three 

mirrors that make up the input mode cleaner. HAM5 houses two of the three mirrors that 

make up the signal-recycling cavity and also the output Faraday isolator. The next set of 

baffles were installed in HAM3 and HAM4 in November and December of 2017. HAM3 

houses one mirror each from the power-recycling cavity and the input mode cleaner and 

HAM4 houses one of the three mirrors in the signal-recycling cavity. The final phase of 

installation took place in April of 2018. The PCal baffles were installed in conjunction with 

the ETMs being replaced for optics with improved coatings.

 

Figure 4.2 is a photo taken just after the installation of the baffles in HAM5. The 

hardware used to attach the baffles allowed for rough and fine adjustments. The final location 

of the baffles was determined using the main laser of the interferometer. The beam was 

aligned as it would be for full interferometer operation, but the input power was turned 

down and the arm cavities were misaligned to prevent any power build-up in the arms. The 

baffles were adjusted so that the beam was centered in the aperture.

 

4.1.2 Measuring Performance

 

Quantifying any improvements made by the SLiC baffles is a difficult task. The main 

reason for this is that scattered light noise is sub-dominant most of the time, so it lies below 

the noise floor of the interferometer. In order to measure scattered light noise, the level of 

noise must be artificially increased. We cannot readily modulate the amount of power in 

any given scattered light path, but we can increase the motion of many surfaces throughout 

the interferometer. We increase the motion (as seen by a witness sensor) by performing an 

injection and measuring the interferometer response. To quantify any improvements, we 

perform the same injection (by matching the response in the witness sensor) before and after 
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the baffles are installed and then compare the results. We compare the results by calculating 

coupling functions . A coupling function is a transfer function that allows us to convert a 

measurement of motion (displacement, velocity, or acceleration) into equivalent strain noise.

 

Shaker Injections

 

To make the injections needed for coupling functions, we use shakers . These shakers 

have a reciprocating mass and a drive system to move the mass. The drive system is either 

piezoelectric or electromagnetic. In either case, a time-varying signal is sent to the shaker 

causing it to vibrate. The injection signal is defined using digital filters and then sent through 

a digital-to-analog converter (DAC) to the shaker. The most common signal used is a line at 

a single frequency, but broadband injections over a range of frequencies and sweep injections 

that slowly change in frequency over time are also used. The range of frequencies being 

tested depends on the shaker being used, but can range from a few Hz up to a few hundred 

Hz.

 

The piezoelectric shakers are made by PiezoSystems, Inc and are small enough to be 

attached directly to the vacuum chamber with a clamp. The electromagnetic shaker, an APS 

113 Electro-Seis, causes interference between the electric fields used to drive the mass and 

the sensors on the vacuum chamber, so a connecting rod is used. Figure 4.3 is a photograph 

showing how the low frequency shaker is connected to the vacuum chamber.

 

The piezoelectric shakers are smaller and more portable, but their applied force is limited 

below 40 Hz. For lower frequency injections, the electromagnetic, or low-frequency , shaker is 

used. The low-frequency shaker is capapble of driving motion at frequencies below 1 Hz, but 

the motion does not propagate well from the shaker through the connecting rod and to the 

vacuum chamber, so 1 Hz is generally the lower limit of the frequencies tested with shakers. 

The low-frequency shaker is capable of driving excitations up to approximately 200 Hz and 

the piezoelectric shakers can drive excitations into the kHz regime, but generally shaker 

injections are only performed up to around 100 Hz. Above that frequency, large speakers 
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are used to make acoustic injections as they can cover a larger area and a larger range of 

frequencies in a shorter period of time. The low-frequency shaker is also capable of driving 

broadband injections. The broadband injections (both acoustic and shaker) are helpful 

in identifying mechanical resonances. Mechanical resonances are important for scattered 

light as the nodes see increased motion at their resonant frequencies relative to surrounding 

surfaces.

 

The amplitude of single frequency line injections are tuned such that the witness sensor 

(usually an accelerometer) sees at least a factor of 10 more motion than during ambient times. 

Figure 4.4 shows the gravitational wave channel (DARM) and the accelerometer response 

to line injections made near the output port of the interferometer.

 

We see in Figure 4.4 

that when compared to the accelerometer, the DARM response to line injections is broader 

(spread over a wider range of frequencies) and the peak amplitude is reduced relative to 

ambient. This widening of peaks is due to fringe wrapping. The shaker injections drive the 

vacuum system at the prescribed frequency, but ground motion is also always present during 

the injections. The low frequency ground motion adds sidebands to the signal at the driven 

frequency. The level of ground motion at the time of the test determines the extent to which 

the peak is broadened.

 

Coupling Functions

 

When performing a set of follow-up injections, we attempt to tune the injection to match 

the accelerometer response of the previous injections as best as possible, but it is never 

possible to exactly replicate an injection. We therefore need to calculate a coupling function 

that relates the interferometer response to the accelerometer response:

  F_{coup}(f)=\frac {\sqrt {h_{\rm inject}(f)^2-h_{\rm quiet}(f)^2}}{\sqrt {X_{\rm inject}(f)^2-X_{\rm quiet}(f)^2}}, 







 







 



 

(4.1) 
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where hinj ect( f ) and hq uiet( f ) are the amplitude spectral densities (ASDs) of the gravitational 

wave channel during the injection and during a period of no injections respectively. Similarly, 

Xinj ect( f ) and Xq uiet( f ) are the ASDs of the witness sensors during injection and quiet periods 

respectively. We can see that if we managed to get two identical injections as seen by the 

witness sensor, but the DARM response was less in one, then the overall value of the coupling 

function would be lower and we would say that the coupling has been reduced.

 

We can also use a coupling function to make a projection of the equivalent strain noise. 

This is especially useful in the case of scattered light where the noise lies below the noise floor 

of the interferometer. We can project the noise and have an estimate of how far below the 

noise floor a particular source may lie. To obtain the projection, we multiply the coupling 

function by the ambient accelerometer spectrum to get a projection to DARM:

  h_{projection}(f)=F_{coup}(f)\cdot X_{quiet}(f) 

   

 

(4.2)

 

Coupling functions are a tool that can help with comparing different injections, but, in 

the case of scattered light, they are not a perfect tool. As we have seen, the interferometer 

response to injections depends not only on the injection, but also the ambient motion of 

the interferometer. As the low-frequency ground motion increases, the peak seen in DARM 

at the injection frequency is lowered in amplitude and spread out across a wider range 

of frequencies. To compensate for this, we often use the root mean square (RMS) of the 

difference hinject( f ) − hquiet 

across a small band of frequencies around the injection frequency.

 

4.1.3 Results

 

Following the installation of the baffles in HAM2 and HAM5, we performed a series of 

shaker injections to compare with measurements taken during O2 prior to installing any 

baffles. Figure 4.5 plots the two sets of coupling functions together and we can see that 
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the results are mostly inconclusive. There is a slight reduction in coupling at a few of the 

frequencies tested, but most are within a factor of two of the original tests. Because of the 

uncertainties involved in calculating the coupling functions, we cannont conclusively say that 

the slight improvement comes from installing the SLiC baffles.

 

Another set of injections were performed in February 2018 after the HAM3 and HAM4 

baffles were installed and the results were similarly inconclusive. At the time of the injections, 

there was a small vacuum leak in HAM6 which necessitated running an auxiliary vacuum 

pump that caused excess noise from 45 − 52 Hz. Also, at the time the injections were 

performed, the interferometer was undergoing almost daily configuration changes with the 

squeezer subsytem being brought online and the input power being increased. A couple of 

attempts were made to repeat the injections, but the results were never conclusive.

 

4.1.4 PCal Periscope Baffles

 

Figure 4.6 is a photo that shows the PCal persicope before and after installing the SLiC 

baffles. For the PCal periscope, we did not have a reference set of measurements against 

which we could compare, so we took a full set of reference measurements. We noticed during 

these tests that the coupling at the Y-end was higher than the coupling at the X-end and it 

seemed to be the worst in the immediate vicinity of the PCal periscope.

 

As Figure 4.6 shows, the baffle installed on the PCal periscope only partially covers the 

structure. The decision to only partially cover the structure was made because the test mass 

is offset with respect to the center of the beamtube (and thus the PCal structure). Cost and 

manufacturing time were also contributing factors. A month long break from the observing 

run was planned for October 2019 to allow both LIGO observatories to make incursions into 

the vacuum system. At LIGO Livingston this opportunity was used to install the additional 

PCal baffle panels as well as a set of newly designed nozzle baffles that were meant to limit 

the amount of light reaching the 6 glass viewports located behind the PCal periscope. All 

of these additional baffles were installed at both end stations at LIGO Livingston. Four of 
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these viewports are used to allow the PCal and optical lever (OPlev) lasers to enter and exit 

the vacuum system. The OPlev laser is used to aid in interferometer alignment. One of the 

other two viewports has a camera mounted on it that provides an image of the test mass and 

the sixth is left unobstructed. While installing the nozzle baffles, we felt that when installed 

as intended, the nozzle baffles for the OPlev viewports left too little clearance for the beam 

to pass through. Those baffles were instead fastened to the panels on the PCal periscope 

baffles. Figure 4.7 shows the completed PCal periscope baffling as well as the OPlev nozzle 

baffles which are located just to the left and to the right of the 6 o’clock position.

 

We repeated the shaker injections that showed high coupling and found that the coupling 

had been reduced after installing the additional baffles. Figure 4.8 is a plot showing the 

interferometer (top) and accelerometer (bottom) response to the initial (red) and follow-up 

(blue) injections. We can see that the interferometer response to the injections is greatly 

decreased following the installation of the additional baffles.

 

4.2 SLiC Part B

 

The installation of the SLiC baffles did not significantly reduce the coupling between 

scattered light in the output arm and the gravitational wave channel, so the investigations 

into possible sources continued. The shaker tests had isolated the source to HAM5 or HAM6, 

but the two chambers are adjacent, so any injection in one chamber caused increased motion 

in the other chamber, making it impossible to distinguish between the two chamber with 

shaker injections. Using a camera that was sensitive to infrared light, we began to take 

photographs during interferometer operation to try and isolate the source. A photo (Figure 

4.9) taken by Robert Schofield showed that the output Faraday isolator (OFI) was scattering 

a significant amount of light.

 

Based on these photographs and the shaker injections pointing 

to the general area, we began designing a shroud to encapsulate the OFI.

 

4.2.1 Design and Installation
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The OFI is made up of several optical components on a small optical table. The optical 

table is suspended from a structure that sits on the large optical table in HAM5. Figure 4.10 

is a photo showing the OFI bench.

 

The OFI would be encapsulated by a shroud comprised 

of coated stainless steel panels that are mounted to the support structure. The panels would 

completely encapsulate the OFI so that any light scattering from the optics on the bench 

could not reach the chamber walls. Some amount of light would scatter from the panels, 

but because the panels are mounted on the HAM optical table, they move less relative to 

the optics than do the surrounding chamber walls. The shroud panels would be coated with 

black nickel so that some of the scattered power would be absorbed by the coating. The 

result is that the scattered light would see less motion and the power would be reduced, thus 

reducing the amount of noise.

 

The design process for the OFI shroud mirrored that for the SLiC Part A baffles. The 

shroud was first designed in SolidWorks and then exported to Zemax where the apertures 

were placed and ghost beams were examined. During this review, we noticed that one of the 

ghost beams coming from the OFI had never been properly accounted for.

 

The thin-film polarizer (TFP) rotates the polarization of any light that is back-reflected 

from components downstream of the OFI so that the light is rejected by the Faraday isolator 

and not able to re-enter the interferometer. The TFP is also the component that is used to 

send squeezed light into the interferometer. Most of the light coming from the interferometer 

passes through the TFP and goes on to the OMC, but a small amount of light is reflected 

from the anti-reflective coating on the rear of the TFP. Figure 4.11 shows the ghost beam 

from the thin-film polarizer (TFP) landing on the mirror mount for one of the steering 

mirrors in the squeezed light path.

 

When the TFP ghost beam was found in Zemax, the 

team at LIGO Hanford used an infrared sensitive camera to look through a viewport to 

determine if the ghost beam was landing on the mirror mount as predicted. Figure 4.12 is 

the photo that was taken by the team at LIGO Hanford confirming the location of the TFP 

ghost beam.
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The TFP is wedged such that the back of the optic is angled with respect to the front. 

This means that the ghost beam and main beam will not co-propagate and will achieve 

separation after some distance. At the location of the shroud, the two beams (ghost and 

main) are still essentially overlapping, so the new shroud could not be used to dump the 

TFP ghost beam. Instead, a small beam dump would be added to the optical table in HAM5 

to dump the ghost beam.

 

The OFI shroud and TFP beam dump were installed in HAM5 in July and August of 

2018. The OFI shroud has 2 apertures for the main beam and one aperture for the squeezed 

light beam that had to be aligne with the respective lasers. Figure 4.13 shows the shroud 

after it was installed. The TFP ghost beam was located using IR cards and viewers and the 

beam dump was placed between the OFI and the squeezed light steering mirror in the path 

of the ghost beam.

 

4.2.2 Results

 

A follow-up set of injections (solid lines) were performed in October 2018 and those 

injections are shown in Figure 4.14 alongside the injections from November 2017 (dashed 

lines).

 

We compared the injections to the set performed in November 2017 instead of the 

more recent injections performed in February 2018 because of the excess noise in DARM in 

February due to the auxiliary vacuum pump. The accelerometer saw a very similar response 

for most of the injections, but the 75 Hz injection did not register as well in the follow-up 

injection. For all of the injections, the DARM response is narrower indicating that the ground 

motion was lower for the follow-up injections. Below 45 Hz, we see a significant reduction in 

the interferometer response. Above 45 Hz, it is less clear, though the area under the curve 

is smaller for the follow-up injections.

 

Figure 4.15 shows the coupling functions in the top panel and the ambient projection 

to DARM in the bottom panel. The coupling functions show reduced coupling below 60 

Hz and similar levels of coupling from 60 to 70 Hz. Above 70 Hz, the coupling appears to 
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have increased, but the projection lies above the measured noise suggesting an issue with 

the calculation. As mentioned in the previous paragraph, the accelerometer response was 

lower for the follow-up 75 Hz injection than for the initial injection and the interferometer 

response was similar but it also included increased noise at 74 Hz that was present even 

when not injecting. Ideally, the 75 Hz injection would have been repeated to try and clarify 

the situation, but limited time prevented another test.

 

SLiC Parts A & B managed to reduce the coupling of scattered light to the gravitational 

wave channel in the critical 30 to 70 Hz frequency band. SLiC focused on reducing the 

amount of scattered power returning to the main beam. It did this with improved coatings 

and geometries that directed the power away from the path of the main beam. The overall 

impact on instrument sensitivity was not profound since the ambient noise lies below the 

noise floor of the interferometer, but because all of the various noise sources add together in 

quadrature, even an improvement in a sub-dominant noise source offers some improvement 

to overall sensitivity.

 

50



 

Figure 4.1. Photo taken in full lock of optics in HAM5. Glints can be seen on the suspension 

structure, ballast masses on the table, and earthquake stops.
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Figure 4.2. Photo taken just after installing the new baffles in HAM5. Suspension structure, 

ballast masses, and earthquake stops are all covered by the new baffles.
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Figure 4.3. The broadband shaker sits on the floor next to the vacuum system and is 

connected to the vacuum system via a carbon fiber tube.
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Figure 4.4. Shaker line injections made after installing baffles. The top plot shows the 

DARM response to the injections while the bottom plot shows the accelerometer response.

 

Figure 4.5. Coupling functions calculated before (red) and after (blue) installing SLiC baffles. 

Tests were performed near HAM5/6 in the output arm of LIGO Livingston.
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Figure 4.6. Photo showing the PCal periscope before (left) and after (right) installing SLiC 

baffles.
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Figure 4.7. Photo showing the completed installation of the additional PCal periscope panels 

which provide full coverage. The OPlev nozzle baffles are also visible just to the left and to 

the right of the 6 o’clock position.
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Figure 4.8. Interferometer response to a 60-75 Hz broadband vibration injection performed 

at the Y-end of LIGO Livingston. The plot compares identical injections made before and 

after installing baffles during the October vent.
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Figure 4.9. Photo showing diffuse scatter off of the OFI bench.
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Figure 4.10. Photo showing the components on the OFI bench with the HAM5 door removed.
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Figure 4.11. Ray tracing the path of the TFP-AR ghost beam showed the ghost beam 

landing on the mount for one of the steering mirrors in the squeezed light path.
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Figure 4.12. Photo taken with an infrared sensitive cameara showing the thin-film polarizer 

(TFP) ghost beam landing on the mount for one of the steering mirrors in the squeezed light 

path.
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Figure 4.13. Photo taken after the OFI shroud was installed.
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Figure 4.14. Comparison of injections performed before (dashed lines) and after (solid lines) 

installing the OFI shroud and TFP beam dump. The accelerometer response (bottom panel) 

was nearly identical for most of the injections and we can see that the interferometer response 

(top panel) was much less below 45 Hz and above 45 Hz the peak heights are similar, but 

narrower. This suggests that the ground motion was elevated for the pre-install injections.
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Figure 4.15. Coupling function (top panel) and ambient projection (bottom panel) calculated 

before (red) and after (yellow) the OFI shroud install. Coupling is reduced from 30-60 Hz 

and remains similar fro 60-70 Hz. Above 70 Hz, coupling appears to have increased, but a 

decreased accelerometer response to the 75 Hz injection and spurious noise at 74 Hz may 

have skewed that result.
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CHAPTER 5. SCATTERED LIGHT NOISE FROM INCREASED 

GROUND MOTION

 

In this chapter we examine scattered light noise in the gravitational wave channel that 

correlates with increased ground motion. As we began preparing the interferometer for the 

third observing run, we began noticing scattering shelves in the gravitational wave channel. 

These shelves are indicative of low-frequency motion being upconverted to higher frequencies. 

In addition to the scattering shelves, we were consistently seeing decreased range during day- 

light hours. We, at first anecdotally and later more rigorously, noticed that the appearance 

of these scattering shelves and range drops were correlated with increased ground motion as 

witnessed by the ground seismometers. Over time, we identified three different morphologies 

for the scattering noise and worked to identify the mechanism for each. As of this writing, 

two of the scattering types have been mitigated. A likely mechanism for the third type of 

scattering has been identified and a mitigation strategy is currently being developed and 

implemented. The work in this chapter represents a highly collaborative effort between the 

on-site commissioners and members of the detector characterization team including signifi- 

cant contributions from the LSU detector characterization group.

 

5.1 End Station Layout

 

Each of the noise sources discussed in this chapter originates near the end test masses 

(ETMs) of the LIGO interferometers, so we begin our discussion with a review of the detector 

components in the vicinity of the test masses. Figure 5.1 is a SolidWorks rendering that shows 

the location of several key components.

 

The test mass is housed inside the basic symmetric chamber (BSC) that was described 

in Chapter 2. Connected to the BSC is a cylindrical vacuum chamber called a manifold . 

This manifold houses the PCal periscope that was described in Chapter 4 as well as the cryo 

baffle . The cryo baffle was designed to catch wide-angle scatter from the ETM and narrow- 
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Figure 5.1. SolidWorks rendering showing the locations of the ETM, PCal periscope, cryo 

baffle, and cryo pump [52]. Distances shown are measured from the beamsplitter.

 

angle scatter from the ITM along the same arm. The cryo baffle gets its name because it was 

meant to shield the cryo pump from scattered light. The cryo pump is a cryogenic vacuum 

pump that greatly aids in removing any residual water vapor that may be trapped inside 

the vacuum system.

 

In addition to housing the test mass, the end-station BSC also houses the reaction mass 

and the transmission monitoring system (TMS) as seen in a schematic representation in 

Figure 5.2. The reaction mass, like the test mass, is suspended from a quadruple-stage 

suspension. Both chains are surrounded by a structure called a cage that is directly mounted 

to the ISI optical table which serves as a displacement reference and also provides protection 

for the chains. Near the top stage of each chain, a set of OSEMs measure the position 

of the chain relative to the cage and can also be used to actuate on the chain. On the 

upper intermediate (UIM) and penultimate (PUM) stages, the OSEMs are mounted on the 

reaction masses, so these sensors measure the relative position of the two chains. At the 

bottom stage, a series of 5 gold traces make up the electro-static drive (ESD) that is used 

to apply corrective forces between the reaction mass and the test mass [48].

 

The TMS consists of a beam-reducing telescope and an optical table with quadrant pho- 

todiodes (QPDs) that measure the position and intensity of the beam transmitted through 

the ETM. The TMS is also serves to send the 532 nm auxiliary laser used for initial align- 

66



 

Figure 5.2. Schematic diagram of the sensors and actuators used to control the position of 

the end test mass [48]

 

ment of the arm cavities into the arm cavity. The telescope and optical table are housed 

on a rigid structure that hangs at the bottom of a double stage suspension. The TMS is 

surrounded by a cage which includes OSEMs to measure the position of the top stage and 

actuate as needed [48].

 

5.2 Ground Motion

 

Ground seismometers placed outside the vacuum system, but near the test masses, mea- 

sure the ground velocity. We divide the ground motion spectrum into frequency bands whose 

motions are dictated by different environmental sources. The earthquake band ranges from 

0 . 03 − 0 . 1Hz and the motion in this band, as the name suggests, comes from earthquakes 

and also from wind gusts. The micro-seismic band ranges from 0 . 1 − 1Hz but is usually sub- 

divided into the 0 . 1 − 0 . 3Hz band and the 0 . 3 − 1Hz band. Motion in this band is primarily 

driven by ocean waves pressing down on the solid earth below. The motion is dominated by a 

peak that can change frequency, but is generally between 0 . 15 − 0 . 2Hz . At LIGO Livingston, 
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this band is often at the level of 1 µ m / s or higher, which is large enough for fringe wrapping 

to occur. The final band is the anthropogenic band which ranges from 1 − 10Hz and it is also 

sub-divided into 1 − 3Hz and 3 − 10Hz bands. This motion is generally attributed to human 

activity such as trains passing, cars driving, and timber logging activity.

 

To aid in studying correlations in the time domain we transform the ASDs of the ground 

motion into band-limited root mean square (BLRMS) segments. We compute the ASD 

over a segment of time sufficient to obtain the required frequency resolution and then in 

each frequency band compute the RMS of the velocity. This RMS becomes one data point 

in the BLRMS time series. We overlap the ASDs so that we get one BLRMS data point 

every minute. We use this same procedure to calculate BLRMS for the gravitational wave 

channel and auxiliary channels and can use combinations of BLRMS time series to look for 

correlations.

 

5.3 Daytime Noise

 

Figure 5.3 is a plot that illustrates the range variation that occurred on most days at 

LIGO Livingston during the first part of the third observing run (O3a). These range drops 

were most often noticed during daylight hours and correlated with increased anthropogenic 

ground motion. Thus, the noise became known as daytime noise .

 

The correlation with increased anthropogenic ground motion was easy to establish, but 

we were unable to narrow down the source to a particular section of the interferometer. 

All of the ground seismometers around the site saw increased anthropogenic ground motion 

as human activity increased during the daytime hours. Attempts to correlate the ground 

BLRMS with the DARM BLRMS proved unsuccessful.

 

With no clear correlation to a particular part of the interferometer, we began performing 

shaker injections in the 1-3 Hz and 3-10 Hz bands at various locations around the interfer- 

ometer. Despite repeated attempts at several locations, we were never able to re-create the 

noise with shaker injections.
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Figure 5.3. The binary neutron star inspiral range of LIGO Livingston over a 24 hour period. 

The highlighted region shows the dips in range associated with daytime noise.

 

The first clue as to the source of the noise came when Robert Schofield noticed that the 

range drops were correlated with noise seen in the photodiodes on the TMS at the X-end 

that monitor transmitted light [53]. Figure 5.4 is a spectrogram that shows the noise in both 

the gravitational wave channel (DARM) and the transmitted photodiode (TRX).

 

The daytime noise was not seismic upconversion of low-frequency ground motion but was 

instead linear coupling of higher frequency motion. We were seeing scattering shelves that 

were indicative of upconverted low-frequency motion, but these scattering shelves were not 

the primary driver of the range drops. This indicated that there were at least two different 

sources of scattered light noise. If we look at Figure 5.4 and compare the TRX spectrogram 

to the DARM spectrogram, we can see that there is excess noise in DARM that appears 

below 50 Hz (n.b. the large glitches such as the one at 2.5 minutes are not related to these 

investigations). This lower frequency noise in the DARM spectrogram was caused by seismic 

upconversion and will be discussed in subsequent sections.

 

Comparing the noise in TRX to the noise in DARM, we found that the signal to noise 
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Figure 5.4. An example of daytime noise at LIGO Livingston. The noise could be seen in 

the gravitational wave channel (top) as well as in auxiliary sensors (bottom).

 

ratio (SNR) was higher in TRX than in DARM. This suggested that the noise source was 

on the transmitted side of the ETM and not in the arm cavity. We attempted to recreate 

the noise by using the OSEMS on the TMS structure to perform drive the motion of the 

structure but these efforts were unsuccessful.

 

To mitigate the noise, we designed a shroud to encapsulate the TMS structure and 

installed the shroud during the break from O3 in October 2019. Figure 5.5 shows the TMS 

structure before (left) and after (right) installing the shroud.

 

Following the installation of the TMS shroud, we no longer saw the daily range variations 

and we no longer saw the noise in spectrograms of either DARM or TRX. Figure 5.6 is a plot 

comparing the DARM, TRX, and ground BLRMS before and after the shroud installation.

 

In this figure, we see that the daily increases in ground motion remained, but the daily noise 

in both DARM and TRX was no longer present after installing the TMS shroud. This is a 

clear indication that the daytime noise was successfully mitigated. We were never able to 
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Figure 5.5. The TMS structure before and after installing the stray light shroud.

 

identify the exact scattering mechanism and we do not see this noise in the other end station 

at LIGO Livingston nor in either of the end stations at LIGO Hanford.

 

5.4 Slow Scatter

 

When we examined the lower frequency noise in the DARM spectrograms that was men- 

tioned in the previous section and that is visible in Figure 5.4, we found that there were 

actually two different kinds of noise. These noises became know as slow scatter and fast 

scatter . In this section, we discuss slow scatter and in the following section we discuss fast 

scatter.

 

Figure 5.7 is a spectrogram that shows the presence of slow scattering.

 

In the spectro- 

gram, we see the scattering arches that are indicative of upconverted low frequency motion. 

The spectrogram, when combined with Equation 3.21 gives us both the frequency and the 

amplitude of the displacement of the scattering surface responsible for the noise. The fringe 

frequency, ffringe, can be read directly off of the spectrogram as the peak frequency achieved 

by the individual arches. With that information, we can determine the velocity of the scat- 

tering surface. As we saw in Figure 3.2 (which is an example of slow scatter), we can plot the 

right hand side of Equation 3.21 on top of the spectrogram and correctly predict the fringe 
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Figure 5.6. Ground motion in the 1-3 Hz frequency band (green) plotted alongside BLRMS 

of 60-100 Hz noise in DARM (red) and the transmon photodetector (blue). The spikes in 

DARM noise prior to installing baffles (on the left of the plot) correlated with the large 

range drops seen in Figure 5.3. Both the spikes in noise and the range drops went away after 

installing the baffles.

 

frequency. Since we are plotting the absolute value of the velocity, we can obtain the period, 

and thus the frequency, of the velocity by measuring the time between every other peak (e.g. 

the time between the first and third arch seen in Figure 5.7. The velocity is the derivative of 

the displacement, so the displacement has the same frequency as the velocity. We can then 

obtain the amplitude of the displacement by dividing the velocity by the angular frequency 

( 2 π f ). Using these methods, we were able to determine that the slow scatter was a result of 

motion in the micro-seism band.

 

The source of the slow scatter was determined to be the gold traces on the reaction mass 

(RM) that make up the electro-static drive (ESD). Slow scatter often appeared as the funda- 

mental along with one or more harmonics. As Equation 3.21 shows, these harmonics appear 

when the scattering path involves multiple reflections. The gold traces on the ESD are highly 
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Figure 5.7. Spectrogram showing the presence of slow scattering in the gravitational wave 

channel at LIGO Livingston. The appearance of the arches coincided with increased ground 

motion at 0.14 Hz. Motion at this frequency is often attributed to ocean waves.

 

reflective, so multiple reflections between the ESD and the highly reflective (HR) coating on 

the test mass are not unexpected. We could also see that the OSEMs on the penultimate 

stage (PUM) of the reaction chain were seeing micron scale relative displacements between 

the test and reaction chains. Though this is not a direct measurement of the relative motion 

between the test and reaction masses, it serves as a close approximation below the pendulum 

resonance at around 0.45 Hz. Finally, we saw slow scatter in both LIGO Livingston and 

LIGO Hanford which indicated that it was not a localized problem such as the one that 

caused the daytime noise. Figure 5.8 is a schematic representation of the scattered light 

path [48].

 

The relative motion between the test and reaction chains is a result of the interferometer 

controls sending a drive signal to push the ETM so that it can maintain the resonance of 

the arm cavity. The interferometer controls are set up such that the ITMs and one of the 

ETMs are allowed to move with the motion of their respective ISIs. As we saw in Chapter 

2, the ISI suppresses ground motion in the micro-seism band, but some residual motion is 
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Figure 5.8. Schematic diagram showing the path traversed by the scattered light that caused 

slow scatter. A change to interferometer controls made the reaction chain follow the test 

mass chain and reduced the relative motion between the two chains.

 

still transmitted to the ISI optical table. Because the micro-seism frequencies lie below the 

resonant frequency of the suspension, this motion is then transmitted to the test mass. And 

because there is no phase correlation between the ground motion at the corner and end 

stations, it is necessary to apply a force to the remaining test mass so that it can follow the 

cavity and maintain resonance. The drive is applied to the ETM but not the RM, so during 

times of high micro-seismic ground motion the relative displacement between ETM and RM 

can reach tens of microns.

 

We can estimate the power in the scattered path by considering the power transmission 

of the ETM and the reflectivity of the RM. At LIGO Livingston, ETMX is the optic that 

is driven by interferometer controls and it has a measured HR transmission of 4.0 ppm [54]. 

Hiro Yamamoto estimated the power reflected from the RM in [55]. We now have all of the 

information required to estimate the noise using Equation 3.18. As mentioned in Chapter 3, 
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the amplitude transfer coefficient in this case is:

  \begin {split} \frac {\delta I}{I} &= T_{\rm tm} \cdot R_{\rm rm} \cdot T_{\rm tm} \\ &= T_{\rm tm}^2 R_{\rm rm}, \end {split} 













 







 

(5.1)

 

since we need to consider an ETM transmission, an RM reflection, and another ETM trans- 

mission. We adjusted the value of the Rrm 

term to achieve the best fit to the measured 

noise and arrived at a value of 2 × 10− 4 which agrees reasonably well (within an order of 

magnitude) with Yamamoto’s estimate [48]. The results of our noise projection agreed well 

with the measured noise and are plotted in Figure 3.3.

 

To mitigate the noise, we implemented a scheme that fed the signal from the PUM OSEM 

back to the top stage of the reaction chain (R0) so that the reaction chain (RC) would track 

the movements of the test mass chain [56]. Implementing the scheme successfully reduced 

the relative motion between the ETM and RM. Figure 5.9 compares spectrograms made 

during times of similar levels of micro-seismic ground motion before (left) and after (right) 

implementing RC tracking. The arches that remain in the after image are the result of 

relative motion between the ETM and the TMS.

 

(a) Scattering in h(t) before RC tracking.

 

(b) Scattering in h(t) after RC tracking. 

Figure 5.9. Comparison of scattering arches in DARM before and after implementing RC 

tracking. With similar levels of ground motion, we no longer see the scattering shelves due 

to the relative motion of the ETM and the RM. The shelves that remain in the image on 

the right are from relative motion of the ETM and the TMS. This ETM-TMS noise is also 

visible in the image on the left at the bottom of the ETM-RM arches [48].

 

We also used a tool called GravitySpy to evaluate the improvements made by RC tracking. 
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GravitySpy uses machine learning for image recognition to classify different glitch types that 

appear in the gravitational wave channel. GravitySpy is a citizen science project where 

volunteers generate training sets for the machine learning algorithm by classifying images 

of glitches [57]. One of the glitch classes is scattering glitches, so we can compare the rate 

of scattering glitches identified by GravitySpy before and after RC tracking to quantify the 

improvements. RC tracking was implemented at both LIGO sites and Figure 5.10 compares 

the rate of glitches before and after RC tracking at both sites. At LIGO Livingston (LLO) 

we see that the glitch rate is decreased considerably as the ground motion begins to exceed 

1 µ m / s and at LIGO Hanford (LHO) we see a decreased glitch rate at all levels of micro- 

seismic ground motion.

 

5.5 Fast Scatter

 

The fast scatter mentioned in the previous section was first identified by Joshua Smith and 

Andrew Lundgren in April 2019 just as the third observing run was beginning [58]. Figure 

5.11 is a spectrogram that shows fast scatter in the gravitational wave channel (DARM).

 

The fast scatter was well correlated with increased anthropogenic band ground motion and 

specifically with trains passing by on the nearby tracks. The train tracks are approximately 

6.03 km from the closest part of the interferometer, which is the Y-End station. When a 

train passes, the 1-3 Hz BLRMS can exceed 1 µm/s . For comparison, the normal daytime 

level is below 0 . 5 µm/s and at night it can fall to 0 . 1 µm/s or less.

 

The fast scatter noise is so named because the spacing of subsequent arches in the time 

domain is approximately 0.25 seconds or we can say that they occur with a frequency of 4 

Hz (compare to slow scatter where the arches are approximately 3.5 seconds apart or 0.28 

Hz). In the case of slow scatter, we obtained the period of the scattering surface motion by 

counting the time between alternating arches. In the case of fast scatter, the situation was 

different and the scattering surface was moving with a period that corresponded with the 

spacing between adjacent arches. The reason for this is that the noise was actually the result 
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of the combination of motion in the micro-seism and anthropogenic bands. We can see in 

Figure 5.11 that the groups of fast scattering arches are spaced at time intervals that are 

consistent with micro-seismic ground motion (in this case, alternate peaks are approximately 

5 seconds apart corresponding to 0.2 Hz scattering surface motion). Figure 5.12 compares a 

zoomed in portion of the DARM spectrogram to a spectrogram made using a simple model 

that combined a 0.2 Hz sine wave with a 4.4 Hz sine wave. Both the spacing between 

subsequent fast scattering arches and the spacing between groups of arches in the model 

agree with the spacing seen in DARM.

 

To understand why we measure between alternate peaks for slow scatter and between 

adjacent peaks for fast scatter in order to determine the frequency of the scattering sur- 

face motion, we consider the displacement. The velocity of the scattering surface is the 

angular frequency, ω = 2 π f , of the scattering surface multiplied by the displacement, xscat: 

v = 2 π f xscat. For a scattering surface moving with a velocity of 1 µm/s at 0.2 Hz, the 

displacement is 0 . 79 µm . Likewise, a 4.4 Hz motion at 1 µm/s corresponds to a displacement 

of 0 . 036 µm . If we were to sum two sine waves with these parameters, we would find a large 

amplitude 0.2 Hz wave with a smaller 4.4 Hz superimposed on top of it. If we then took the 

derivative of this summed sine wave, we would have the velocity. It is the magnitude of the 

velocity that determines the fringe frequency, so we plot the magnitude of this summed sine 

wave in Figure 5.13.

 

We can see that as the 0.2 Hz motion passes through its maximum ve- 

locity, the 4.4 Hz motion goes through several cycles. At times, the velocities are in the same 

direction and the two velocities sum. At other times, the opposite is true and the magnitude 

of the total velocity is less than either of the component velocities. We have plotted one 

period of the 0.2 Hz velocity and we see two "arches." The time between subsequent 0.2 Hz 

peaks represents half of the total period and we measure between alternate peaks to obtain 

the full period. For the summed sine wave, subsequent peaks represent the full period, so 

we measure between subsequent peaks to obtain the full period.

 

We reviewed the design documents for several interferometer components and found that 
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the cryo baffle had a resonance in the vicinity of 4 Hz. The resonance had been recorded 

as being 3.8 Hz, so we performed shaker injections near the end station cryo baffles at that 

frequency. At the X-End, we saw no interferometer response, but at the Y-End the 3.8 Hz 

injection produced noise with the same characteristics as fast scatter. The Q-transform of 

the DARM response to this injection is shown in Figure 5.14.

 

To zero in on the exact resonant frequency, we performed a series of sweep injections 

with the low-frequency shaker [56]. Figure 5.15 shows the accelerometer (top) and DARM 

(bottom) response to a sweep injection that went from 3.3-3.9 Hz. The resonance appears 

at 3.49 Hz.

 

A 4-5 Hz sweep injection showed an additional resonance at 4.62 Hz as shown 

in Figure 5.16.

 

Efforts are currently underway to damp the mechanical resonances of the cryo baffle. 

When the damping work is completed, the shaker injections will be repeated to determine 

if the fast scatter noise has been mitigated.
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(a) LLO glitch rate as a function of µ seism.

 

(b) LHO glitch rate as a function of µ seism.

 

Figure 5.10. Glitch rates from GravitySpy before and after reaction chain (RC) tracking was 

implemented at both sites. The data is binned by ranges of ground motion [48].
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Figure 5.11. DARM spectrogram showing the presence of fast scattering. This spectrogram 

was made using data from a time when a train was passing by the site. Trains increase the 

ground motion in the anthropogenic band.

 

Figure 5.12. The top panel is a zoom in of the noise seen in Figure 5.11 and the bottom 

panel is a spectrogram of a simple model that combines 0.2 Hz motion with 4.4 Hz motion 

to obtain a similar shape to the noise seen in DARM.
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Figure 5.13. A simple plot illustrating the summing of 0.2 Hz and 4.4 Hz velocities. As the 

0.2 Hz motion passes through its maximum velocity, the 4.4 Hz motion goes through several 

cycles. At times, the two velocties are in the same direction and thus sum, but at others the 

4.4 Hz motion is opposite the 0.2 Hz motion, so the overall velocity is less than the 0.2 Hz 

would be on its own.

 

81



 

Figure 5.14. Spectrogram showing the DARM (top) and accelerometer (bottom) response to 

a 3.8 Hz injection performed at the manifold between the BSC that houses ETMY and the 

cryo pump. As the injection reaches full amplitude, fast scatter noise appears in the DARM 

spectrogram.
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Figure 5.15. Accelerometer (top) and DARM (bottom) response to a sweep injection that 

ran from 3.3 Hz to 3.9 Hz. As the sweep passes through 3.5 Hz (as seen by the accelerometer) 

we see upconverted noise in DARM.
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Figure 5.16. DARM (top) and accelerometer (bottom) response to a sweep injection that 

ran from 4 Hz to 5 Hz. As the sweep passes through 4.6 Hz (as seen by the accelerometer) 

we see upconverted noise in DARM.
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CHAPTER 6. BACKSCATTERED LIGHT IN THE LIGO 

BEAMTUBES

 

Light that scatters from one test mass then bounces one or more times off of the beamtube 

and then recombines with the main beam at the opposite test mass is called forward scattering 

and was considered by Thorne in [45]. This analysis showed that the forward scattering in 

the beamtube would be a potential limiting noise source for LIGO, so baffles were installed 

inside the beamtube during its construction to mitigate this forward scattering. The baffles 

limited the amount of light that would forward scatter, but some amount of light can back 

scatter from the baffles and recombine with the main beam at the same mirror from which 

it originated. This light picks up phase noise from the acoustic motion of the beamtube 

and creates amplitude noise when it interferes with the main beam circulating in the arms. 

Noise associated with back scattered light from the beamtube baffles was first considered 

by Flanagan and Thorne in [45]. More recently, Martynov [59] and Bai [60] have studied 

the implications of this noise on future detectors. Both Martynov and Bai added to the 

original analysis by including the effects of radiation pressure and Bai also included seismic 

upconversion of the beamtube motion. We here also use updated calculations of the bi- 

directional reflectivity distribution function (BRDF) which tells us how light scatters from 

the test masses. In this chapter, we review the calculations as well as a series of measurements 

made at LIGO Livingston that allowed us to set upper limits on the noise.

 

6.1 Noise from Backscattered Light

 

In Chapter 3 we wrote down the following equation for the equivalent strain noise due to 

scattered light:

  \label {eq:strain_bt} \tilde {h}(f)= A \left [ \frac {h_{\rm eff}}{\Phi } \right ] \tilde {S}(f) + A \left [ \frac {h_{\rm eff}}{RIN} \right ] \tilde {C}(f). 

 











 













 

(6.1)

 

where the amplitude transfer coefficient, A , is defined as the ratio of the scattered field and 

the measurement field. For convenience, we wrote down the following definition in terms of 
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the ratio of powers:

 \label {eq:coefficient_bt} A^2 \equiv \frac {\delta I}{I} 









 

(6.2)

 

In the case of backscattered light in the beamtube, we have three scattering events that must 

take place for the light to cause noise in the gravitational wave channel: the light scatters 

from the test mass, the light backscatters from surfaces inside the beamtube, and the light 

re-combines with the main beam. The ratio of powers is then:

 \label {eq:bt_coefficient_bt} \begin {split} \frac {\delta I}{I} &= \beta _{\rm mir} \cdot \beta _{\rm baf} \cdot \beta _{\rm mir} \cdot \frac {d \Omega }{r^2} \\ &= \beta _{\rm mir}^2 \beta _{\rm scat} \frac {d \Omega }{r^2}, \end {split} 



































 

(6.3)

 

where βmir 

and βbaf 

are the BRDF of the test mass and beamtube baffles respectively, 

d Ω = 2 π sin θ dθ is the solid angle over the backscattering surfaces, r = R / sin θ is the 

distance to the backscattering surface, R is the beamtube radius, and θ is the angle between 

the main beam and the scattered light.

 

6.1.1 BRDF of Test Masses

 

Given a spectrum of mirror surface roughness (i.e. its phase map), we can simulate the 

scattered light distribution assuming a Gaussian beam incident on the mirror. In addition, 

due to the large number of point defects on the surface, we find that there is a larger 

contribution to the scattered light at large angles than would be estimated from the mirrors’ 

surface PSD alone.

 

Figure 6.1 is a plot showing the BRDF of the LIGO test masses. This plot combines the 

BRDF from surface roughness with the BRDF from point defects. In the following sections, 

we detail how we obtained these curves.

 

Surface Roughness
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Figure 6.1. BRDF of LIGO test masses created using the sum of phasemap simulations and 

a fit to measurements made of wide-angle scatter due to point defects.

 

Light scatters due to surface roughness with spatial frequency ξ at an angle θ ∼ λξ . 

The rate at which light scatters is proportional to the amplitude of the surface roughness. 

In order to calculate the BRDF from the phasemap of a mirror, we use the Stationary 

Interferometer Simulation (SIS) software developed by Hiro Yamamoto and others [61]. The 

simulation calculates the interaction of the fields with the test mass in the spatial domain 

and the field is propagated along the arm using the paraxial approximation to Maxwell’s 

equation for a plane wave. We sample the field amplitude at the radius of the beamtube 

along the distance of the beamtube to obtain the scattered light distribution. We then apply 

a fit of the following form to obtain an expression for the BRDF due to surface roughness:

  \label {eq:brdf_rough_bt} \beta _{\rm mir,rough} = \frac {Z}{\theta ^{n}} 













 

(6.4) 
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Using the phasemaps of the ETMs at LIGO Livingston, the result of fitting gives the following 

values for the fitting parameters Z and n :

  Z = 9.66 \times 10^{-10}\, \qquad n = 2.55 

      

 

(6.5)

 

We then substitue Eq. 6.4 into Eq. 6.3 and integrate over the length of the beamtube to get 

the following:

  \label {eq:a_rough_itm} A^2_{\rm rough,ITM}=2.37 \times 10^{-15}, 





  

 

(6.6)

  \label {eq:a_rough_etm} A^2_{\rm rough,ETM}=2.38 \times 10^{-15}. 





  

 

(6.7)

 

The differences arise from the fact that the ITMs are 30m from the start of the beamtube 

and the ETMs are 10m away. This gives the following for the limits of integration:

 \label {eq:theta_ITM} 0.00015 < \theta _{ITM} < 0.02, 

  



 

(6.8)

 

and

 \label {eq:theta_ETM} 0.00015 < \theta _{ETM} < 0.06, 

  



 

(6.9)

 

We then sum the contribution from all four test masses as incoherent sources to obtain:

 \label {eq:a_rough_ave} A^2_{rough,ave} = \sqrt {2(A^2_{rough,ITM})^2+2(A^2_{rough,ETM})^2} 













  



 

(6.10)

 

Point Defects

 

The phasemap calculation underestimates the amount of light scattered at large angles 

due to point defects on the surface of the mirror. To account for this, we made measurements 

of the power scattered into viewports in the interferometer while operating the interferometer 
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[62]. We then applied a fit to this measured data to obtain the following:

  \label {eq:brdf_point_bt} \beta _{\rm mir,point} = 6 \times 10^{-4}\,\rm e^{-25.78\, \theta }. 



    

 

(6.11)

 

We can substitute Eq. 6.11 into Eq. 6.3 and integrate along the beamtube (using the same 

limits of integration as above) to obtain:

  \label {eq:a_point_ITM} A^2_{\rm point,ITM}=1.12 \times 10^{-15}, 





  

 

(6.12)

 

and

  \label {eq:a_point_ETM} A^2_{\rm point,ETM}=1.99 \times 10^{-14}. 





  

 

(6.13)

 

Again, we sum the contribution from the four test masses in quadrature to obtain:

 \label {eq:a_point_ave} A^2_{point,ave} = \sqrt {2(A^2_{point,ITM})^2+2(A^2_{point,ETM})^2} 













  



 

(6.14)

 

Finally, to obtain A from Equation 6.1, we add A2 

r oug h,av e 

and A2 

point,av e 

in quadrature:

 \label {eq:a_ave} A^2 = \sqrt {(A^2_{rough,ave})^2 + (A^2_{point,ave})^2}. 










 




 

(6.15)

 

6.1.2 Coherence Length of Beamtube Vibrations

 

The question of whether backscattered light from different baffles is coherent or incoherent 

determines if we should sum the amplitude or the power, respectively, to determine the full 

contribution of noise to the gravitational wave channel. In [45], Flanagan and Thorne worked 

under the assumption that the noise would be incoherent. In [60], Bai provides the following 

justification for that assumption.
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We begin by writing the backscattered field as follows:

  \psi =\sum _{a=1}^N \psi _a, 











 

(6.16)

 

where ψa 

is the field backscattered from baffle a and ψ is the sum over all N baffles. Re- 

writing the field from individual baffles in terms of amplitude and phase gives ψa 

= | ψa 

| eiϕa . 

This allows us to write the total backscattered power as follows:

  |\psi |^2=\sum _{a,b=1}^N|\psi _a||\psi _b|e^{i\phi _a}e^{-i\phi _b}. 













 

(6.17)

 

The phase shift from individual baffles, ϕa 

is proportional to k za 

where za 

is the distance to 

the baffle from the test mass. We saw previously that phase wrapping occurs with displace- 

ments on the order of λ/ 2 . Since the location of the baffles is not precise on the order of one 

micron and λ = 1 . 064 microns, it is reasonable to assume that the phase of the light coming 

from subsequent baffles would not be coherent and we sum the contribution from individual 

baffles as incoherent sources:

  \left <|\psi |^2\right >=\sum _{a=1}^N|\psi _a|^2. 
















 

(6.18)

 

6.2 Driven Measurements of Acoustic Coupling

 

The goal of this work was to measure the coupling of acoustic motion of the beamtube 

to the gravitational wave channel. To measure the motion of the beamtube, we installed 

accelerometers along both arms of the interferometer as shown in Figure 6.2. Figure 6.2 is 

representative of the Y-arm of the interferomter, but we installed equivalent sensors along 

the X-arm. The accelerometers are noise limited at lower frequencies, so we used previously 

installed ground seismometers to provide the low frequency portion of the motion spectrum 

necessary for taking into account fringe wrapping. Between 5-10 Hz, both types of sensors 

90



 

provide useful data, so we high passed the accelerometer data and low passed the seismometer 

data with a crossover frequency of 8 Hz. We then combined the two filtered spectra to obtain 

a complete spectra for the motion of the beamtube. The ground seismometers are not located 

on the beamtube, so we had to work under the assumption that the beamtube follows the 

ground at low frequencies.

 

Figure 6.2. Schematic layout of equipment for driven measurements of beamtube backscatter. 

The accelerometers were permanently installed along the beamtube and the shaker was 

moved around to different locations.)

 

6.2.1 Ambient Vibration Levels

 

We first wanted to look at the noise from backscattered light in the beamtube during 

normal operation of the interferometer. We collected data from the ITM on the X-arm of 

the interferometer and data from accelerometers installed along the X-arm of the interfer- 

ometer during the month of September 2019. We averaged the data from the 5 beamtube 

accelerometers and combined the data with the seismometer data to obtain a complete mo- 

tion spectrum as described in the previous section. We used this data in Eq. 6.1 along with 

the values for Ar oug h,av e 

and Apoint,av e 

from Eqs. 6.10 and 6.14 to make noise projections 

due to surface roughness and point defects respectively. We also added the two together in 

quadrature to obtain a total noise estimate. The results of these ambient noise projections 

are shown in Figure 6.3 (the total noise projection is not shown as it lies nearly on top of the 

curve for noise from point defects). We find that the total ambient noise level is more than 
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two orders of magnitude below the noise floor of the interferometer. The noise from point 

defects dominates the total noise from backscattered light as it is an order of magnitude 

larger than that from surface roughness.
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Figure 6.3. Ambient backscattering noise projections due to surface roughness and point 

defects on the surfaces of the test masses.

 

6.2.2 Driven Measurements

 

With the ambient noise levels lying so far below the noise floor of the interferometer, we 

decided to perform a series of driven measurements to verify our model. The idea behind the 

driven measurement is that we attach a mechanical shaker to the beamtube to increase the 

motion of the beamtube. For these tests, we used the low-frequency shaker that was described 

in Chapter 4. Figure 6.4 is a photograph showing the low-frequency shaker attached to the 

beamtube.

 

We measure the increased motion with the accelerometers and use the driven 

motion spectra as an input to our model. We then compare the results of our model with 

driven motion to the interferometer response.

 

We began by making broadband injections in two different bands: from 10-30 Hz and 
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Figure 6.4. APS 113 Electro-Seis shaker with carbon fiber connecting tube used to peform 

driven measurements of the beamtube.

 

from 30-100 Hz. We also performed a slow sweep injection that started at 10 Hz and 

continued up to 100 Hz. We next tried lower frequency injections including a line at 1.55 

Hz and a sweep from 1-5 Hz. These low frequency injections were visible in temporary 

accelerometers placed at the injection location, but these injections did not propagate to the 

permanent accelerometers installed along the beamtube. None of these injections showed up 

in the output of the interferometer, but we did notice a few mechanical resonances of the 

beamtube showing up in our accelerometers.

 

Equation 6.1 assumes a mostly uniform motion of both arms of the beamtube. With 

only one shaker, we could only excite one arm of the beamtube, and even with the maximum 
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output of the shaker, we could only excite one full arm by exploiting the mechanical reso- 

nances mentioned above. A 14.1 Hz resonance propagated along one half of the arm where 

the excitation was applied, but failed to propagate past the gate-valve at the mid-station. 

A 56.4 Hz resonance was the only injection propagated the full length of one arm, so we 

used that injection to make noise projections. We again took the average of the beamtube 

accelerometers along the arm where the injection was made and combined that average with 

data from the ground seismometer to obtain a complete motion spectra. We then added a 

factor of 1 / 2 to Equation 6.1 to account for the fact that we were only exciting one arm.

 

By using the shaker, we increased the average motion of the beamtube at the 56.4 Hz 

resonance by a factor of 230. Despite this, we did not see any response in the output of 

the detector. Figure 6.5 plots the projection of the injection along with the output of the 

interferometer during the injection. The peak amplitude of the upconverted projection lies 

a factor of 4.7 below the noise floor of the interferometer. This allows us to set an upper 

limit on the noise from backscattered light in the beamtube. We show the upper limit of the 

ambient noise as a dashed line in Figure 6.5. This upper limit for ambient noise is a factor 

of 10 or more below the current sensitivity of the instrument.

 

6.3 Implications for Future Detectors

 

The next generation of ground-based gravitational wave detectors will likely utilize longer 

arms along with other technological improvements to achieve higher sensitivity than is possi- 

ble with current generation detectors like LIGO. A look back at Equation 2.22 demonstrates 

why this increase in arm length will increase sensitivity:

  h(t) = \frac {\Delta L}{L}. 











 

(6.19)

 

The strain sensitivity is the change in distance measured divided by the distance over which 

the change is measured, so an increase in arm length equates to improved sensitivity.
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Figure 6.5. Backscattering noise projection made using data from driven measurements. 

The blue curve is the projection made using the data from driven measurements and the red 

curve is an upper limit applied to the ambient noise spectra.

 

Cosmic Explorer is a proposed next generation gravitational wave detector with 40 km 

long arms with a design that is otherwise very similar to that of LIGO with the A+ upgrades 

installed. The fabrication and vacuum pumping of the 40 km long beamtubes that will make 

up the arms of Cosmic Explorer will make up a significant portion of both the monetary 

and time budgets of the project. Therefore, it is necessary to consider the problem of noise 

from backscattered light in the beamtubes. The reports by Martynov [59] and Bai [60] were 

written to specifically address the issue of noise from backscattered light in the beamtubes, 

but we apply the methods of this paper to the problem in the following paragraphs.

 

We begin by substituting L = 40 km into Equations 3.13 and 3.17. We then update the 

limits of integration listed in Equations 6.8 and 6.9 with the following:

 \label {eq:theta_ITM_CE} 0.000015 < \theta _{ITM,CE} < 0.02, 

  



 

(6.20) 
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and

 \label {eq:theta_ETM_CE} 0.000015 < \theta _{ETM,CE} < 0.06, 

  



 

(6.21)

 

With these parameters updated, we are able to make noise projections for Cosmic Explorer. 

Figure 6.6 compares the noise projection and the upper limits for the noise to the design 

sensitivity of Cosmic Explorer.

 

Near the beamtube resonance at 14.1 Hz, the noise projection
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Figure 6.6. Backscattering noise projection and upper limits for Cosmic Explorer. Ambient 

noise projects below the Cosmic Explorer design curve, but the upper limits extend above 

the design sensitivity from 9-19 Hz.

 

is within a factor of 2 of the design sensitivity. The upper limit calculation projects above 

the noise floor of Cosmic Explorer from 9-19 Hz.

 

These projections do not take into account any possible improvements to the design of 

Cosmic Explorer that could reduce the noise. These improvements include better coatings on 

the test masses with less surface roughness and fewer point defects which would reduce the 

BRDF and altered geometry of the beamtube, including larger radius, that would decrease 

the backscatter at small angles which becomes dominant with 40 km arms.
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6.4 Summary

 

We have established reliable estimates for the backscatter noise contribution to the LIGO 

sensitivity. We also performed a series of driven measurements in an attempt to measure the 

noise contribution. Though our driven measurements failed to show a response in the inter- 

ferometer, the measurements allowed us to establish upper limits on the noise contribution 

from backscattered light. These upper limits lie far enough below the current sensitivity of 

the instrument to allow us to state that noise due to backscattered light in the beamtube 

will not be a limiting noise source for LIGO.

 

We also applied our calculations to a next generation gravitational wave detector, Cosmic 

Explorer. The proximity of the noise projections to the design sensitivity of Cosmic Explorer 

suggest that further study is needed to ensure that noise due to backscattered light in the 

beamtube will not be a limiting noise source for Cosmic Explorer.
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CHAPTER 7. CONCLUSION

 

In this document we have described the mechanisms by which scattered light can cause 

noise in the gravitational wave channel.

 

We reviewed the SLiC project and the baffles that were installed as part of the project. 

Coatings for the baffles were chosen based on their optical properties, cost, handling, and 

manufacturing constraints. SolidWorks and Zemax were used to determine the location of 

the baffle apertures and to ensure that ghost beams were properly dumped. Installation 

of the baffles was followed by a series of shaker injections that were used to measure the 

effectiveness of the baffles. At the end of the project, coupling to the gravitational wave 

channel in the output arm and at one of the end stations had been reduced.

 

We studied the investigations of scattered light noise due to increased ground motion. 

The shroud installed on the TMS structure at the X-end eliminated the daytime noise. RC 

tracking implemented at both LIGO sites greatly reduced the relative motion between the 

test and reaction masses. As a result of this work, the peak frequency and thus the impact 

on overall sensitivity of the slow scattering shelves has been reduced. Fast scattering has 

been fully characterized, the likely source has been identified, and a mitigation strategy is 

currently being implemented.

 

Finally, we presented the results of measurements made to determine the noise due to 

beamtube backscatter. We established upper limits for the noise and determined that this 

noise will not be a limiting source for LIGO. We made noise projections for the next genera- 

tion Cosmic Explorer project and found that the upper limit projections lie near or slightly 

above the design sensitivity of Cosmic Explorer.

 

The astrophysical impacts of this work are difficult to quantify, but we can consider a 

couple of examples to understand the effects.

 

During O3, LIGO Livingston had greater sensitivity than LIGO Hanford in the 20-100 Hz 

frequency range most affected by scattered light as shown in Fig. 7.1. While the differences 

between the two detectors are not necessarily due to scattered light, the comparison helps to 
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Figure 7.1. Strain sensitivities of LIGO Livingston (blue) and LIGO Hanford (green) during 

O3a.

 

understand how improving detector sensitivity in this frequency range impacts astrophysical 

searches.

 

If we consider a pair of 100 M⊙ 

black holes, the detection range for LIGO Livingston 

is 1958 Mpc. For LIGO Hanford, that range is reduced to 1557 Mpc [63].

 

A metric, VT , that that is often used to evaluate potential interferometer upgrades is 

the product of the volume of spacetime observed and the time spent observing. We can 

look back at Figure 1.1 and see that the rate of detections has increased over time as the 

sensitivity of the gravitational wave detector network has increased. Taking the time to make 

detector improvements has resulted in more detections than would have been made without 

the improvements even when the time spent not observing is considered. While this work did 
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not significantly increase the maximum range (and thus the volume observed), it did reduce, 

and in some cases eliminate, the range drops associated with increased ground motion. The 

detectors are then able to spend more time observing at their maximum sensitivity thus 

increasing the VT of the detectors.

 

We can also look at one of the more significant observations made to date by the LIGO- 

VIRGO network to understand the impact of this work. GW190521 was the largest system 

observed by LIGO to date and represented the first observation of an IMBH. The signal 

from this event swept up in frequency from 30-80 Hz and the SNR of the signal at LIGO 

Livingston was 11.5. Compare this to fast and slow scattering, and we see that both affect 

the same 30-80 Hz frequency band. Slow scattering occurred with a median SNR of 37.6 and 

the median SNR for fast scattering is 11.0. Slow and fast scattering had median durations 

of 3.2 and 1.3 seconds respectively [48]. The signal from GW190521 had a duration of 0.1 

seconds [43]. Had fast or slow scatter been present in the interferometer output at the time 

the signal from GW190521 passed through the LIGO detector, we likely would not have seen 

it.

 

Scattered light remains one of the more difficult noise sources to measure and mitigate 

in gravitational wave detectors. The methods described here provide a framework for iden- 

tifying sources of scattered light. Spectra and spectrograms provide information about the 

velocity and displacement of the scattering surface. Data from seismometers, accelerometers, 

and OSEMs are systematically searched to identify correlations. Ray tracing and SolidWorks 

models are used to identify potential scattering paths. Once a source is identified, a miti- 

gation strategy can be employed. Baffles can be used to reduce the amount of power in the 

scattering path and to direct the scattered light away from the main beam. Changing inter- 

ferometer controls can be used to reduce the relative motion between optics and scattering 

surfaces. As further improvements to detector sensitivity are made with future upgrades, 

such as frequency-dependent squeezing, new sources of scattered light noise will be revealed. 

Managing scattered light noise will be critical in order to see continued improvements to 
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detector sensitivity. We have presented here a set of tools that will greatly aid in reducing 

scattered light noise for years to come. 
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